Chapter 3PRIVATE

Audio

Sound is one of the most critical elements of a multimedia application because it can have such a positive or negative effect on the perception of a product. Audio enhances multimedia applications with music, sound effects, and speech. Each audio element can play a different role in a multimedia application. Music sets the mood and provides emphasis to an application. Sound effects add variety and sparkle. Speech offers an alternative way to present information.

Audio Subsystem
The multimedia PC has all the computer hardware and software needed to play digitized sound. The essential component of this audio subsystem consists of an audio card. We saw, in the previous chapter, that the minimum MPC specifications call for the digital audio subsystem to include:

· 8-bit digital-to-analog converter (DAC), linear PCM (pulse code modulation) sampling, 11.025 kHz and 22.05 kHz sampling rate, DMA/FIFO with interrupt

· 8-bit digital-to-analog converter (DAC), linear PCM (pulse code modulation) sampling, 11.025 kHz sampling rate, microphone input

· music synthesizer chip

· on-board analog audio mixing capabilities

· MIDI-in and MIDI-out ports

IBM announced that its audio subsystem, part of its Ultimedia platform, would provide both CD-quality audio and waveform audio through an onboard digital signal processor (DSP). Programmable DSP technology provides advanced functions for applications requiring audio. The key advantage of the DSP's programmability comes in the ability to support multiple existing and emerging audio standards.

The subsystem supports the following functions:

· Analog audio conversion to and from a digital PCM (pulse code modulation) data format, with 8‑ and 16‑bit sample widths and sampling rates ranging from 8,000 to 44,100 samples per second

· Digital audio processing in several grades of quality, using 16‑bit ADPCM (Adaptive Differential PCM) audio compression and decompression

· ADPCM CD‑ROM XA audio decompression

· Mixing, support for synthesizer, PCM, and line‑in inputs

· MIDI synthesized playback, offering eight‑note multitimbral and eight‑part polyphonic support, with dynamic note allocation. With 106 different musical sounds supported, multimedia presentations can easily include a growing library of MIDI sound files.

IBM's DSP offers concurrent processing. As a programmable technology, this DSP can support multiple existing and emerging audio standards. It also supports many other applications such as imaging, speech, telephony, and fax.

Users who opt to upgrade an existing CD-ROM system piecemeal should exercise care in the selection of the components. They should look for products that bear the MPC logo on the packaging or that indicate MPC compatibility. This is particularly true for audio cards. While several manufacturers produce audio cards, not all of them are MPC compatible ­ even within the same manufacturer's product line. For example, Creative Labs, Inc. manufactures both the Sound Blaster and the Sound Blaster Pro. The former does not comply with the MPC specification, while the latter does.

In addition, because no standards yet exist on the interrupt requests for audio cards, some cards may behave differently than others. In theory, all audio cards complying with the MPC specification should operate identically. In fact, they may operate erratically in some instances. This may depend partly on hardware (if the MPC was put together from components rather than purchased as a complete system) and partly on the software configuration or on the way the application invokes the audio drivers.

The first MPC compatible audio boards came from Creative Labs, Inc.; Media Vision, Inc.; and Turtle Beach Systems. The Sound Blaster Pro from Creative Labs provides MPC quality sound at the lowest price. However, it has received some complaints about overall sound quality. Nonetheless, the 4-watt stereo board still offers a substantial improvement over the PC's built-in speaker.

Media Vision's Pro AudioSpectrum board costs about $90 more than the Sound Blaster Pro; and it includes an industry standard SCSI port. Media Vision added a shield to the board; so it doesn't pick up or amplify PC noise (such as that from a hard drive or tape backup unit). It is generally regarded as the cleanest implementation of the MPC specification. It provides a good option for those willing to pay a bit more for better sound quality and who would like to connect other SCSI devices to their PC.

These two boards, like many other sound boards, use Yamaha's first-generation FM Synthesis YM3812 chip. Media Vision recently began shipping its Pro AudioSpectrum-16 and Pro AudioSpectrum Plus audio adapters that use the new OPL-3 chip (YFM262, a 4 operator stereo FM synthesizer). These cards support sampling and playback at sample rates up to 44.1 kHz. More than a dozen other vendors should also begin shipping similar devices in the near future.

The MPC audio specification calls for the capability of handling 8-bit audio at 11.025 kHz and 22.05 kHz (AM and FM radio quality). IBM specifies the capability of processing both 8‑ and 16‑bit audio up to 44,100 kHz (CD audio quality). Media Vision's Pro AudioSpectrum-16 and Pro AudioSpectrum Plus cards also offer 16-bit recording and playback for under $350. Targeted primarily at mainstream computer sound applications, such as entertainment and education, these cards provide the highest fidelity and support the widest possible variety of sound recording options. With a 16-bit bus, the cards support faster data rates as well as more IRQ and DMA options which enable simple installation and provide more options to minimize interrupt conflicts.

Turtle Beach Systems's MultiSound board offers professional sound quality; but it carries a significantly higher price tag (close to $1000). It uses 126 16-bit digital samples of real instruments stored in ROM chips on the board. This sample playback technology means that when a production calls for a brass section, the card produces the exact sound of a brass section in CD-quality. It also incorporates architecture which maximizes throughput while minimizing CPU usage, leaving more CPU time for animation, graphics, video, or other multimedia elements.

Some audio cards have different features than others. For example, the Pro AudioSpectrum controls volume through the software, while the Sound Blaster Pro has a volume dial in addition to software controls. However, the volume dial on the back of the card makes access difficult or cumbersome. Playback requires speakers external to the PC, as the 2.5 inch internal speaker cannot handle quality sound. Users may want to look for external speakers that have a volume dial or knob to facilitate volume control independently from the computer or audio card. Superior sound reproduction requires higher quality speakers; so users who want the best quality sound reproduction may want to cable their audio card or CD-ROM drive directly to their stereo amplifier.

To record and merge digitized sound into multimedia applications requires a few additional components, such as a microphone or a MIDI (Musical Instrument Digital Interface) device. However, the production of a high quality multimedia product usually requires a good audio technician.

Sound Concepts
Before we discuss working with sound, we need to understand some of the concepts and terminology. We typically represent sound as an analog (continuous) waveform (sine wave) (fig. 3-1). The waveform represents the vibration of the air molecules. We call the distance between the top (or bottom) of the waveform and its baseline amplitude. Amplitude indicates the volume of the sound; so the points in a waveform with the greatest amplitude (greatest distance from the baseline) sound the loudest. Points in the waveform with little amplitude sound the quietest. A flat line in a waveform indicates silence.

[image: image1.png]——one wavelength —
LY T

amplitude

baseline

displacement

distance from source ——

e one periot——
g

a=h

displacement

1
Copyright Notice: The Concise Columbia Encyclopedia Microsoft Bookshelf © 1987 ‑ 1992 Microsoft Corporation. All Rights Reserved.

Periods make up all waveforms. A period represents the distance between two consecutive peaks in a waveform. The number of periods that occur in one second determine the frequency. One period per second equals one hertz (Hz). One thousand periods per second equals one kilohertz (kHz).

People who work with digital audio do not talk about "recording". Instead, they talk about "sampling," "sampling sound," or "making sound samples". This involves translating an analog waveform into a digital form by taking tiny (discrete) samples of the waveform at fixed intervals during sound capture. This process determines the frequency of the waveform. At the same time, the process captures the values for the waveform's amplitudes, thereby defining the amount of information stored per sample.

Each sample gets mapped to an integer value which is then stored. These integer values can then serve to recreate the original waveform, resulting in quality sound practically indistinguishable from the original. Three characteristics determine the quality and size of a digital waveform: the frequency of the samples, the amount of information stored per sample, and the number of channels recorded.

Frequency
As just mentioned, sampling captures sound at the same frequency to divide the waveform into portions of identical size. More portions (i.e. higher frequency) translate into better quality and greater disk storage requirements. Higher frequency also implies the recording of higher tones in the sound (11.025 kHz sampling only captures tones lower than 5.513 kHz in frequency).

However, this is only an approximation, as some information in the original waveform inevitably gets lost in the process. This underscores the importance of sampling frequency and its direct relation to sound quality. The more frequent the samples, the less information lost in approximation.

The MPC supports three standard sampling frequencies: 44.1 kHz, 22.05 kHz, and 11.025 kHz.

Amount of Information
The amount of information stored with each sample specifies how precisely the sample gets measured. We cannot measure anything absolutely but only to a certain degree of precision. For example, a measurement taken with a ruler marked to 1/16 of an inch will have greater precision than one taken at a resolution of 1/4 inch. We can calculate the information per sample by dividing each waveform sample vertically into equal units. An 8-bit sample divides each sample into 256 (28) equal units. A 16-bit sample divides into 65,536 (216) equal units. The greater the number of vertical units used to describe the waveform characteristics in the sample, the more accurately the sample resembles the original analog waveform. However, more information also requires more storage.

Sound engineers sometimes refer to the number of units between the baseline and the upper limit of a waveform as its dynamic range. For 8-bit samples to divide the waveform into 256 units, the waveform must have a dynamic range that covers all (or most) of the 256 units. If the waveform's dynamic range only covers 128 units, this reduces precision (and quality) ­ as though each sample only uses 7-bits.

Number of Channels
The number of channels determines whether a recording produces one waveform (called monaural or mono) or two waveforms (stereo). Stereo sound can offer a richer listening experience than mono; but it also requires twice the amount of storage space.

Storage Requirements
We can conclude, from the previous discussion, that digital sound files are large, regardless of the quality selected. However, lower sampling rates produce much smaller files than higher ones. The following formula can serve to estimate audio storage needs:

(sampling rate * bits per sample) (8 = bytes/sec

For example, a one-minute monaural sound clip requires the following space:

Bits/sample
Sampling Rate

Bytes Required

8 bits

11.025 kHz

0.66 MB/minute

8 bits

22.05 kHz

1.32 MB/minute

16 bits

44.1 kHz

5.292 MB/minute

Stereo sound requires twice the amount of storage space.

Waveform Audio

Sound adapters and the software that come with them can record and produce a variety of sound files, depending on the drivers selected. These file types can consist of sound (.SND), song (.SNG), voice (.VOC), FM music (.CMF, .CMS, .SBI), waveform (.WAV), MIDI (.MID), AdLib (.ROL), etc. We have seen that the MPC supports waveform, MIDI , and CD quality audio. Compact disc audio represents the highest quality format; but it produces the largest files. Other formats store sound files more economically but with some corresponding tradeoffs in quality. The lowest quality level, waveform, can also have a variety of gradations, such as telephone grade, AM (8 bit, 11.025 kHz), or FM (8 bit, 22.05 kHZ) quality, depending on the sampling frequency.

Waveform audio can serve to record voice-overs, narrations, network voice mail, electronic mail, teleconferencing, and audio notes in applications such as spreadsheets and wordprocessors. It can provide a powerful tool for the average end-user. Windows 3.1 includes only four sample WAV files; but users can obtain others from bulletin boards and online services as well as recording their own from an audio CD or through a microphone connected to the sound card.

Multimedia Windows includes a Sound Recorder (fig. 3-2) to play, record, and edit sound files. It has five buttons to perform these functions: Rewind, Forward, Play, Stop, and Record. As the sound plays, the wave box graphically displays it somewhat like an oscilloscope.

After opening a sound file, the user can play it or edit it. The types of files one can open depend on the type of hardware installed. Pressing the Play button plays the file from beginning to end, unless one stops it somewhere or moves to a particular position by using the scroll bar. In this case, the Play button begins playing at the position indicated by the scroll bar. The status windows on either side of the wave box indicate the total length of the sound file and the listener's position within it. The Forward button moves quickly to the end of the file, while the Rewind button returns to the beginning.

Users can create a sound file by recording it, inserting one sound file in another, or mixing two sound files together. They can also combine the methods. Recording requires a microphone attached to the sound card or a cable connecting the line-in port of the audio card to the audio source. Users can record a new file or add to an existing one. When recording to an existing file, the new sound records over and erases the original one. However, beginning to record the new sound at the end of the file will append to that file. Users can record up to one minute of audio with this tool. However, the Windows User's Guide indicates that memory availability determines the maximum length of the file when recording to an existing file.

Users can insert sound files into other files by copying, linking, or embedding them. The selected method determines how they can make changes. When one copies a sound file to a document in a different application, he or she can change it only by deleting it and copying a new one in its place. Embedding resembles copying; but it allows editing sound files from within the other application's document. Users have two ways to embed sound files made with the Sound Recorder. They can start from the document where they want to embed the sound and open the Sound Recorder at the point where they want the sound inserted; or they can start from the Sound Recorder to create or edit a sound file, copy it to the Clipboard, and paste it into the application.

Linking establishes a dynamic connection between two files such that updating information in one file automatically changes the other. All actions begin the same way: by using the Copy command on the Edit menu to copy the sound file to the Clipboard. The second set of commands, to insert the sound into another file, depend on whether one wants to copy, embed, or link it.

After recording a sound file, users can edit it or add effects. Editing allows inserting one sound file into another, mixing two sound files together, or deleting part of a sound file (before or after the current playing position). Any changes made to a linked sound file appear in all files that contain links to that sound file. This occurs immediately upon updating the file because the update setting affects only the image that represents a linked file in the destination document. Since the document only stores a pointer to the sound file, it has nothing to update.

The mixing option blends two sound files to play simultaneously. This does not provide much flexibility; so manufacturers of audio cards usually package utilities to go along with them. They commonly include sound mixers that have a little more sophistication than Sound Recorder. These mixers usually allow combining sounds from a variety of sources, such as from a CD player, synthesizer, microphone, auxiliary source (line in), or from a .WAV file. Some mixers, like Media Vision's (fig. 3-3), also accept input from external speakers and allow adjusting bass, treble, balance, and volume levels.

Sound recorder supports a few sound effects such as increasing or decreasing the volume by 25%, decreasing the speed by 50% or increasing it by 100%, playing it backward, or adding an echo to it.

CD Audio

The digital sound format used by audio CDs (known as Red Book audio or CD-DA [Compact Disc Digital Audio]) represents the other end of the sound quality spectrum. This type of audio has a sampling rate of 44.1 kHz and stores 16 bits of information for each sample. Multimedia PCs can play this type of audio through headphones or through a set of external speakers which users can connect directly to the CD-ROM drive, to the speaker port of the audio card (with audio connections from the CD-ROM drive to the line-in port of the audio card), or to a separate stereo system wired either to the CD-ROM drive or to the audio card's line out port.

This allows developers to use the highest quality audio without requiring any special hardware or software. However, the increased quality has some tradeoffs. First, CD-DA requires the entire processing power of the CD-ROM drive (i.e. it uses up the entire bandwidth of the CD-ROM drive); so an application cannot transfer any other data while the drive plays the CD audio. Secondly, CD-DA requires a lot of disc space, as indicated by the chart above. For example, ten minutes of stereo digital audio can consume over 100 MB of space.

The choice of sound fidelity level for an application requires balancing sound quality against the storage space requirements for an application. From an audio perspective, it requires a reasonable fidelity level for the sound used; however, from a resource management perspective, the storage space for sound files is limited.

CD-DA (44.1 kHz) is particularly well-suited for music or language applications which have critical nuances. Audio sampled at 16-bits and a frequency of 11.025 kHz or 22.05 kHz offers very good quality; but it requires more support from an application. To play 16-bit data on an 8-bit MPC requires the application to include code to convert the data to 8-bit during playback. This has the advantage that an application will sound superior to 8-bit titles when run on an MPC that supports 16-bit audio data. Eight-bit audio (22.05 kHz) produces sound quality comparable to AM radio. At the low end of the MPC sound spectrum, 8-bit audio (11.025 kHz) can produce dull and fuzzy sound which may prove adequate for prototyping, applications that use voice narration, or for low-frequency sound effects.

CD-ROM titles that use Red Book audio are often referred to as mixed mode discs. They store the CD-DA sound separately from the other data on the disc and require a separate access when retrieving it. This means that a mixed mode title must pre-load program, image, and other data into memory (or into a cache area on the hard disk) and then dedicate the CD-ROM drive's circuitry to access the CD-DA sound as the application runs.

Playback of an application that uses streaming audio may produce some noticeable interruptions in the sound. Sometimes these interruptions might result from an older version of a device driver. Most commonly, they occur because the application and the sound segment compete for CPU time.

One approach to solve this problem involves entering MCI (Media Control Interface) play commands so that they don't execute at the same time as time‑consuming visual effects. Moving the MCI play command and changing the timing of this command and the visual effects command so that the two commands don't interrupt each other should result in smooth playback.

Another technique increases the size of the buffer used to load the audio segment from the CD‑ROM until the interruptions cease to present a problem. To increase the audio‑buffer size, one enters the MCI open command using the "buffer" option, as shown in the following example:

mci "open sample.wav type waveaudio buffer 6 alias sample"

The number after the buffer option indicates the number of seconds of audio that the buffer can hold. The default is four seconds. (Alternatively, one can also select the Driver Setup icon from the Control Panel to reset the buffer size for all applications in the system.)

Increasing the audio‑buffer size requires extra memory. Two factors determine the amount of extra memory needed: the rate at which the audio segment was sampled (for example, 11 or 22 MHz) and the type of audio (mono or stereo). One should allot 1 K of memory per MHz for a mono sample or 2 K per MHz for a stereo sample. For example, increasing the buffer by one second for an 11‑MHz, mono audio segment requires 11 K; for an 11‑MHz, stereo audio segment, 22 K. If MCI can't get enough memory to satisfy the buffer request, it uses smaller buffers (as little as 32 K).

If increasing the buffer size takes too much memory, one can decrease the sampling rate or use the WaveEdit tool to change the audio segment from stereo to mono format.

Playing CD Audio Discs
The support for CD audio involves the cooperation of three levels of drivers: the manufacturer's CD-ROM device driver, Microsoft's MSCDEX.EXE, and Windows 3.1 MCICDA.DRV. Windows 3.1 requires these three drivers to use the CD-ROM Audio support. Since Windows 3.1 does not come with an audio driver, users need to get it from the multimedia extensions or from another source, such as the manufacturer of the CD-ROM drive or of the audio card or from a bulletin board. Applications that use CD audio contain the proper drivers. Brett McDonald, of BFM Software, wrote a driver, WinCD (available on CompuServe: CIS 77370,1254), for those who don't have multimedia extensions and who want to play their audio discs on their CD-ROM drives.

The manufacturer's driver interfaces directly to the CD-ROM device. It talks to MSCDEX.EXE. MSCDEX.EXE talks to MCICDA.DRV of Windows 3.1 which supports Windows applications using CD Audio. All three drivers must be installed and configured correctly to play music CDs. Windows controls the audio playback; but instead of playing the audio through the computer, it plays it through special chips in the CD-ROM drive. When the Windows 3.1 setup program runs, it checks for the presence of MSCDEX.EXE. If it finds it, it will create an entry for MCICDA.DRV in the system. But, it will NOT install the driver! The user must do this after completing the installation.

One should following these steps to add all these drivers to the system:

1. Add the manufacturer's driver supplied with the CD-ROM drive to CONFIG.SYS.

2. Add MSCDEX.EXE from the manufacturer or Microsoft to AUTOEXEC.BAT.

3. Configure the above drivers for each other, using the documentation from the manufacturer.

4. Go to the Control Panel in Windows and select the drivers icon.

5. Press the ADD button.

6. Select the "[MCI] CD Audio" entry and press the OK button

7. Insert the Windows disk requested and follow the instructions.

8. Restart Windows. The system should now be able to play music CDs.

If the above procedure still does not get the MCICDA.DRV to run, one can:

1. Edit SYSTEM.INI.

2. Find the [MCI] section.

3. It should contain a "CDAudio=mcicda.drv" entry. If not, add it.

4. Save SYSTEM.INI and exit editor.

5. Do a directory listing on the <windows>\SYSTEM directory.
6. Determine if MCICDA.DRV is present. If not:

a. Search Windows 3.1 Install disks for a file "MCICDA.DR_".

b. Use the EXPAND.EXE command to expand the file to <windows>\SYSTEM.

c. Restart windows.

MIDI

The standard Multimedia PC platform can also play MIDI (Musical Instrument Digital Interface) files (files ending with a .MID extension) through either an internal synthesizer or through an external synthesizer attached to the machine's MIDI port. These files are standardized for PC and Macintosh computers. MIDI capability expands a developer's options in including sound with a title. A variety of different MIDI files exist, from popular music soundtracks to special audio effects. Bulletin boards, commercial sources, and several CD-ROM titles group these files into libraries, the musical equivalent of clip art.

Established in 1982, MIDI has become an international standard for digital music that specifies a cabling and communication system that lets electronic instruments work together. First used with synthesizer keyboards, it was later expanded to drum machines and unlikely instruments like electronic saxophones and, eventually, to computers from different manufacturers. MIDI is a sort of "party line" where instruments can listen and talk. Unlike a party line, however, MIDI has an electronic musical conductor (called a sequencer) to orchestrate it all.

MIDI sophistication is measured in terms like: number of simultaneous channels, number of simultaneous notes possible in each channel, number of instrument voices supported by each channel, total number of simultaneous voices and/or notes possible.

Any musical instrument with appropriate hardware interfaces and a microprocessor to convert MIDI messages can become a MIDI device. MIDI devices communicate with each other by sending messages through the interface. The messages contain digital descriptions of a musical score ­ complete with the sequence of notes, timing, and instrument designations called patches. When a music synthesizer chipset plays MIDI messages, it interprets the symbols and produces music.

The interface consists of a standardized set of physical connections to provide a single cabling and communication port standard. The Multimedia PC specification calls for an internal synthesizer along with standard MIDI port connections which may include one or more of the following ports: MIDI In, MIDI Out, and MIDI Thru.

Each port has a specific purpose in sending, receiving, or relaying MIDI messages between devices. This design permits connecting multiple MIDI devices for simultaneous control.

MIDI In receives MIDI messages sent from other MIDI devices.

MIDI Out transmits original messages generated from the device and sends MIDI messages to other devices.

MIDI Thru propagates messages received on MIDI In ports to other connected MIDI devices and sends MIDI messages to other devices.

All MIDI ports support the standard MIDI cabling which consists of a shielded, twisted pair wire with a male 5-pin DIN plug connected to each end of the wire. A cable connected to the MIDI Out port of one device connects to the MIDI In port of another in a manner similar to the cabling of a VCR.

Synthesizers
The MPC usually comes with FM synthesis drivers, usually in two or more flavors ­ basic and extended. Extended FM synthesis can support better MIDI files, but seldom plays them as was intended to be heard. The Microsoft MPU‑401 MIDI driver, usually found in the Control Panel by selecting the Drivers icon, could provide a better option. The MPU‑401 consists of a special MIDI interface that plugs into the computer and controls MIDI instruments using the most solidly supported MIDI standard in use today. MPU‑401 was made for DOS use; and many programs (notably, games with "Roland sound") can play MIDI music on instruments connected this way.

All Multimedia PCs include at least a base-level synthesizer. Users can enhance their computer by adding internal or external synthesizers which can consist of either base-level or extended synthesizers. Base-level and extended synthesizers differ solely in the number of instruments and notes they can play, not in quality or cost. The extended specification targets professional synthesizers or groups of instruments strung together.

The following table shows the minimum capabilities of base-level and extended synthesizers:

Synthesizer
Melodic Instruments

Percussive Instruments

Number
Polyphony

Number

Polyphony

Base-Level
3 instruments
6 notes
3 instruments
3 notes

Extended

9 instruments
16 notes
8 instruments
16 notes

Polyphony indicates the number of notes the synthesizer can play simultaneously. Melodic instruments each have different MIDI channels, while percussive instruments (key-based) all share a single MIDI channel.

Synthesizing a sound takes little or no memory, whereas sampling and storing it takes a lot; so low‑cost synthesizers often use a combination of sampled and synthesized sounds. For instance, a violin sound may start with a sample to provide the initial attack of the bow and then blend smoothly into a synthesized sustain. This provides realistic sound while conserving memory.

Microsoft has adopted a new extension to the MIDI standard, called General MIDI (GM), for instrumental playback by synthesizers. GM controls the order in which the instrumental voicings get placed in the synthesizer. To use a synthesizer that does not comply with GM, one would have to use a MIDI map.

Synthesizers that can play General MIDI files have 24 voices or can play 16 notes on 15 melodic channels and eight notes of percussion.

A channel is like an instrument. Only one "voice" can appear on a channel at any given time, even though that voice can play more than one simultaneous note (e.g., chords). Once a channel finishes playing music in one voice (after the piano solo, for instance), it can then switch voices and play new notes until that segment ends. Changes can occur frequently (every note), or infrequently (several bars of music, or never change during the whole composition).

When playing a basic .MID file using FM synthesis, music should have a maximum of 6 melodic and 2 percussive sounds at the same time. Because cards usually have 22 FM tone generators to work with, we can assume that most instrument sounds result from two or more FM tones. Not all instruments require "composite" or "complex" tones; so some extensions are possible.

We can easily imagine a basic MIDI setup having to play too many notes at once. Even extended MIDI would have a hard time playing all parts of a symphony piece. If a MIDI instrument (or sound card) is told to use too many channels at the same time, it will ignore all notes on the higher‑numbered channels. This can make strange sounding music. The back beat, bass line, or harmony gets interrupted, making the listener wonder if the computer is broken. Therefore, channels 1‑4 should contain the most important (melody) part of music in an extended composition and channels 13‑14 in a basic composition.

MPC MIDI calls for no fewer than 128 instrument voices! These are arranged into logical groups of 16 instrument types (piano, organ, guitar, etc.) with 8 variations in each type (acoustic grand piano, bright acoustic piano, electric grand piano, etc.).

A sequencer can help in recording by letting the musician mold sounds at will. He or she can change a note's duration, correct timing errors (called quantizing), add pitch bend, or control volume and stereo panning. A sequencer might also record in step time, in which the user tells the sequencer the duration of the next note or notes and then plays them one at a time at his or her own pace until the next duration. In other words, it can slow the tempo to allow a nonvirtuoso to play a part and then speed it up at playback. At any point, the musician can play back part or all of anything he or she is working on. Because a recorded "performance" uses digital data, one can edit the recorded tracks faster and more precisely than with tape.

One important sequencer function quantizes recorded notes, i.e. moves them so they start or end on the nearest beat, even if the timing of the original performance was sloppy. Some sequencers also have a Humanize feature, which permits just the opposite: taking a precise performance (or a step‑time generated sequence) and introducing a tiny bit of randomness to make it sound more natural.

Two MIDI Formats
Multimedia Windows supports two different standards for playing MIDI information generated by an application or stored in a MIDI file. These standards, the General MIDI guidelines and the Microsoft authoring guidelines for MIDI files, both include certain instrument patch settings and key assignments, as defined by the General MIDI specification. They differ in the channel settings they require.

When configuring Windows, the Setup program installs MIDI setups that support both standards for playing MIDI information on common sound card and synthesizer combinations. These setups include key maps, patch maps, and channel settings that ensure that the MIDI information plays accurately on the synthesizer. The MIDI Mapper lets users select a different MIDI setup, create a new setup, edit key assignments, or edit patch or channel mappings for an existing setup.

Before using MIDI Mapper, one should have a basic understanding of MIDI concepts and terminology. One should not use MIDI Mapper to edit or create MIDI setups without experience with MIDI or an understanding of the results of any changes.

Windows 3.1 includes MIDI setups for Ad Lib or Ad Lib-compatible synthesizers, the Roland synthesizer included on the LAPC1 sound card, the Roland MT-32, the E-mu Systems Proteus/1, and any General MIDI synthesizers that support General MIDI guidelines or that play files authored according to Microsoft guidelines. To use another type of synthesizer may require creating a MIDI setup for it.

MIDI Mapper
MIDI instruments have been around much longer than MPC computers. Older MIDI instruments do not have some options contained in newer devices, such as an accordion sound as voice 21 or an alto sax as voice 65. To help ensure that MIDI files authored on one synthesizer sound the same when played back on another, Multimedia Windows includes MIDI mapping functionality as part of its core system capability. The MIDI Mapper, one of the gadgets in the Multimedia Control Panel, allows a user to identify the MIDI devices in the system and to map one instrument patch number to another so that the synthesizer knows which instrument to use, even though the original file uses standard patch numbers. The MIDI Mapper performs the following functions:

· Re-map or mute channel data

· Independently route channel data to any MIDI port in the system

· Re-map patch numbers

· Re-map key numbers (intended primarily for key-based percussion)

· Scale channel/volume controller messages.

These standard patch services enable Multimedia Windows to provide device-independent MIDI file playback for applications.

This avoids the problem resulting from recording a MIDI file on one synthesizer and playing it back on another. A MIDI file won't reproduce correctly unless it plays back on the same MIDI synthesizer setup used to create it. For example, a piano concerto created on one synthesizer and played back on another might substitute a flute for a piano.

One of the MIDI Mapper's several functions provides a "patch list," or translator that changes MPC voice numbers into MIDI instrument‑specific voice numbers. Since a user can map any number of MPC voices to the same MIDI instrument‑specific voice, he or she can have all piano variations sound the same over MIDI. The MIDI Mapper can also direct where a particular channel goes. For instance, it can set channels 1‑10 for the MIDI line and channels 13‑16 for FM synthesis on the sound card. Users can mix and match as they please. Channels 11‑12 have no strict definition. They are useful for sound effects and percussion on extended MIDI; but the Mapper lets anything go on these channels as well.

MIDI Mapper also allows the user to specify the channel mapping for a new MIDI setup. Channel "patches" are not fun. They are probably the most boring and confusing part of the MPC environment. They require intimate knowledge of channel numbers supported by MIDI instruments, what voices play what sounds, and so on. Fortunately, once programmed, the MIDI Mapper retains their settings until edited or changed again to create new ones or to edit existing ones.

MIDI Messages
The MIDI specification defines not only the physical connections but also the standard messages that MIDI devices use to communicate with each other. These messages identify the events to define and reproduce music with one or more MIDI devices. The message content defines events such as striking a note or changing an instrument from a flute to an oboe.

A file called a MIDI file stores the set of MIDI messages and data values that define and reproduce a musical piece. Each MIDI file can store up to 16 music channels of information. A sequencer captures MIDI messages and builds a MIDI file.

A sequencer basically acts as a multi-track digital recorder for MIDI data. It deals with sound as MIDI data, receiving binary coded data transmitted from other MIDI devices and storing it in its memory as separate "tracks." It follows the same concept as a multi-track tape recorder which stores sound on adjacent tracks of tape. Musicians generally record one track at a time, as they would with a multi-track tape deck. Each track can represent a different instrument. Musicians can play back recorded tracks as they lay down new ones.

After storing the data in memory, the sequencer allows editing and then transmission to other MIDI instruments for playback. It's not like the digital audio recorders used to make compact discs, however. These recorders convert analog sound into digital data by sampling audio waveforms and representing each sample with a numerical value. Instead, sequencers store in memory numerical representations of events ­ channel voice messages that describe what actions each receiving instrument should take to interpret and respond to the events occurring at the master.

Sequencers don't even necessarily look alike. Some comprise on-board units built into a synthesizer; others consist of separate, stand-alone units. Many, such as most of the ones for the MPC, consist of software packages for running on a computer.

On-board sequencers have an internal interface with the voices of their host keyboard. The keyboard can record and play back events without using MIDI at all. Most keyboards with built-in sequencers have MIDI capabilities; so their sequencers can record and play back on other MIDI devices as well as on the host.

Stand-alone sequencers consist of dedicated hardware systems ­ small computers pre-programmed to perform specific tasks, as opposed to more general-purpose personal computers. Stand-alone sequencers have no voices of their own and require a MIDI connection with the instruments they record and play back on.

A computer-based sequencer provides an alternative to a hardware sequencer. It comprises software programs that perform the functions of its hardware counterparts, all controlled from a computer.

A sequencer should provide the following basic functions:

· Can import or export a sequence as a MIDI file in formats 1 and 0.

· Settings to control individual tracks; controls for each track should operate independently of other tracks.

· A Current Position Indicator to indicate the current position in the MIDI file.

· Recording and editing capability in real time and step time. Real time operations capture data as it's played on a synthesizer keyboard. Step time operations capture individual MIDI instructions as entered from the Multimedia PC keyboard.

· Quantizing to correct timing and synchronization inconsistencies.

· Support for external MIDI devices and the ability to accommodate extensive MIDI configurations.

A sequencer records events as MIDI messages, each of which takes up a certain amount of memory. A longer message or a greater number of events depletes sequencer memory faster. Since individual events fill sequencer memory, the depletion rate depends not so much on the length of the piece but on its density. An 8-track sequence of fast chords will take up much more memory in five minutes than one track of slow scales. This differs greatly from recording on tape which uses resources at the same rate regardless of the content.

Each sequencer has a limited amount of memory for storing recorded events. When it fills that space, it cannot record any more ­ just like when the tape runs out. Sequencers, however, tend to run out of memory long before one side of a standard 90-minute tape would elapse. This gives one indication why they haven't replaced their magnetic cousins in the recording studio.

Sequencers talk to MIDI instruments by means of a serial transmission protocol similar to that used for data transfer over phone lines by modem. Modem communications have a top speed of about 14,400 bits per second. MIDI information goes about 50,000 bits per second.

When playing a MIDI file, the sequencer sends MIDI messages, such as "Instrument 4, play C sharp using voice 22, 4th octave, 80% loud NOW and sustain" from the file to a synthesizer which converts messages into sounds of a specific instrument, pitch, and duration. A synthesizer generates music and sound with a DSP or other type of chip by creating and modifying waveforms and sending them out through a sound generator and speakers.

Some synthesizers produce sounds from parameters that define the timbre of an instrument. Timbre describes the tonal quality that distinguishes one instrument from another. Other synthesizers use digitally recorded samples of the original instruments and modify these sounds in memory for volume and pitch changes. Synthesized sounds do not seem as realistic as those produced from the original samples. Multimedia PCs may use either type of synthesizer.

The MIDI message sent to the synthesizer identifies which timbre to use. To find the timbre, one must look at the patches defined by the MIDI Manufacturers Association (MMA) General MIDI Mode specification.

A polyphonic synthesizer can play several sounds at once. Polyphony differs slightly from the number of timbres a synthesizer supports. A four-voice synthesizer with six-note polyphony can play six notes simultaneously; but it must distribute the sounds among a maximum of four timbres ­ for instance, a four note piano chord, one note with a flute, and one note with a violin.

MIDI Benefits
MIDI files have some very strong benefits compared to waveform audio. Since MIDI files consist of a series of instructions, they require much less disk space. For example, 1.8 seconds of waveform audio recorded at 8-bit, 22.05 kHz could require 41 K, while 2 minutes of MIDI audio could use as little as 8 K. Secondly, because MIDI files are so much smaller, the application developer can pre-load them much easier than a waveform file, giving greater flexibility in design and when specifying when music occurs.

Media Control Interface

Multimedia Windows's MCI (Media Control Interface) presents a high-level interface that allows software to control a variety of multimedia devices and files in a standard way. Programmers use MCI to control waveform audio, CD audio, MIDI files, and even VCRs and videodisc players. Windows 3.1 includes a simple program, Media Player, that controls any installed MCI device.

The MIDI Mapper icon appears in the Control Panel only if the owner installed a MIDI device. MIDI Mapper selects a MIDI setup for the sound card or synthesizer to ensure that the sounds generated are appropriate ­ for example, that each synthesized instrument actually sounds like its real-life counterpart. General MIDI offers a standard mapping of instrument sounds to MIDI codes. If a sound card or module doesn't conform to the general MIDI standard, a user will need to remap the sounds; or the MIDI files will sound terrible. Windows includes a few setup files for common sound devices. Users can edit these or create their own. But they should understand what they're doing and keep the user's manual for their sound device handy.

The Media Player, in the Accessories group, allows users to play multimedia files and control hardware devices. It can play sounds, including MIDI, and control any MCI multimedia device installed on the system.

Before Media Player can recognize a multimedia device, one must install the hardware and then use Control Panel to install the device drivers necessary for the hardware. The Drivers option in the Control Panel installs the appropriate drivers for these devices. If the system has a CD-ROM drive set up when Windows 3.1 installs, the Windows Setup program automatically installs the MCI audio CD-ROM driver. However, if the user installs a CD-ROM after setting up Windows, he or she should prepare for some manual finagling.

When the user chooses a device from the Device menu in Media Player, he or she specifies the MCI device to play. MCI devices include audio compact disc players, MIDI sequencers, and videodisc players.

To play a multimedia file (sound or animation) or device (such as a videodisc player), the user chooses the type of device desired from the Device menu, a pull-down list that displays all installed MCI devices. The selections that appear on this menu vary, depending on what the system has installed.

Types of Multimedia Devices
Media Player (fig. 3-4) plays two types of multimedia devices: compound and simple. Compound devices play files; so the user must specify the name of a file after selecting a device. For example, choosing the Sound device requires specifying a .WAV file to play. If one wants to play another type of file, he or she can change devices from within the Open dialog box.

Simple devices generally control external hardware devices that do not use disk files ­ for example, an audio compact disc player. When the user chooses a simple device from the Device menu, Media Player readies itself to start playing whatever the hardware device currently has loaded in it. The user simply clicks the Start icon to begin. Media Player's controls resemble those found on a VCR or audio CD player ­ Play, Pause, Stop, and Eject. The Eject button works only if the device has an eject function. The title bar displays the action chosen and the type of device playing the selection (if a simple device) or the filename (if a compound device).

Simple devices, such as audio compact disc players and videodisc players, will continue to play even after closing Media Player. Compound devices, such as MIDI and other sound files, stop playing when one quits the application.

Media Player provides two scales to help monitor and control the playing of media. The Time scale shows time intervals; and the Track scale shows tracks. The scale appears above the scroll bar (see fig. 3-4). It displays track locations or time intervals, depending on which one the user selects. Displaying track locations is useful when playing devices oriented around different tracks, such as audio compact disc players.

We have discussed the basic concepts of sound, the various audio formats supported by the MPC, and how to use these formats individually on the MPC. The principles outlined here will also apply to the use of authoring tools (chapter 6) that combine various media into effective multimedia presentations.

Addresses

Creative Labs, Inc.

1901 McCarthy Blvd.

Milpitas CA 95035

408-428-6600

fax: 408-428-6611

Media Vision, Inc.

47221 Fremont Blvd.

Fremont, CA 94538

510-770-8600

fax: 510-770-9592

Turtle Beach Systems

CyberCenter, Unit 33

1600 Pennsylvania Ave.

York, PA 17404

717-843-6916

fax: 717-854-8319

For Further Reading

Anderton, Craig. MIDI for Musicians. New York: Amsco Publications, 1986.

Casabona, Helen. Using MIDI. Van Nuys, CA: Alfred Pub. Co., 1987.

Casabona, Helen. Basic MIDI Applications. Van Nuys, CA: Alfred Pub. Co., 1988.

Casabona, Helen. Advanced MIDI Applications. Van Nuys, CA: Alfred Pub. Co., 1988.

Eiche, Jon F. What's MIDI?: Making Musical Instruments Work Together. -- Milwaukee, WI: Hal Leonard Pub. Corp., 1990.

Jeff, Rona. MIDI: The Ins, Outs & Thrus. -- Milwaukee, WI: Hal Leonard Pub. Corp., 1987.

Rothstein, Joseph. MIDI: A Comprehensive Introduction. -- Madison, WI: A-R Editions, 1992.

Yelton, Geary. Music and the MacIntosh. Atlanta: MIDI America, 1990.

