
Providence College Providence College

DigitalCommons@Providence DigitalCommons@Providence

Mathematics & Computer Science Student
Scholarship Mathematics & Computer Science

Spring 2011

Sorting on CUDA Sorting on CUDA

Ayushi Sinha
Providence College

Follow this and additional works at: https://digitalcommons.providence.edu/computer_science_students

 Part of the Computer Engineering Commons

Sinha, Ayushi, "Sorting on CUDA" (2011). Mathematics & Computer Science Student Scholarship. 1.
https://digitalcommons.providence.edu/computer_science_students/1

This Article is brought to you for free and open access by the Mathematics & Computer Science at
DigitalCommons@Providence. It has been accepted for inclusion in Mathematics & Computer Science Student
Scholarship by an authorized administrator of DigitalCommons@Providence. For more information, please contact
dps@providence.edu.

https://digitalcommons.providence.edu/
https://digitalcommons.providence.edu/computer_science_students
https://digitalcommons.providence.edu/computer_science_students
https://digitalcommons.providence.edu/computer_science
https://digitalcommons.providence.edu/computer_science_students?utm_source=digitalcommons.providence.edu%2Fcomputer_science_students%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.providence.edu%2Fcomputer_science_students%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.providence.edu/computer_science_students/1?utm_source=digitalcommons.providence.edu%2Fcomputer_science_students%2F1&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dps@providence.edu

Department of Computer Science & Engineering

Research Experience for Undergraduates 2010

Sorting on CUDA

Author:
Ayushi Sinha

Supervisor:
Prof. Kunal Agrawal

August 20, 2010

1 Introduction

Sorting, the process of arranging items in a certain order, is one of the most researched
topics in the field of computer science. With increase in the amount of data that can
be stored on computers, increase in the efficiency of sorting algorithms has become
increasingly important. Newer algorithms have been deviced in order to sort data
faster. However, even the best sequential sorting algorithms will take a large amount
of time to sort a large enough data set. The need for something faster than sequential
sorting algorithms led to research in the field of parallel computing. Several parallel
sorting algorithms are now being deviced and perfected in order to further optimize
sorting.

While researching at Washington University in St. Louis, I implemented parallel
sorting algorithms for quicksort, bitonic sort and radix sort in CUDA. The algorithms
were tested on five data sets with different distribution patterns: normal distribution,
gaussian distribution, bucket distribution, sorted distribution and zero distribution.
All inputs are 32-bit integers. The time taken by the kernel to complete the execution
of the parallel sorting algorithms is recorded and compared.

2 Algorithms

2.1 Quicksort

Quicksort is one of the two comparison sorts I implemented. Since CUDA 3.0 does not
support recursion, I had to implement a non-recursive algorithm which made the sort
less efficient. This algorithm calls the kernel function only once to sort one data set.

• Procedure

In the kernel function, I begin by declaring two arrays start and end. The first
index of start is set to 0 while that of end is set to N − 1, where N is the size of the
data set. Furthur code is executed under the condition that the thread index, idx, is
greater than or equal to zero. If the condition is met, variables L and R are set to
start[idx] and end[idx], respectively. L stores the leftmost required index of the data
set.Therefore, to begin with, it is set to zero. Similarly, R stores the rightmost required
index of the data set. Therfore, to begin with, it is set to N − 1.

If L is less than R, then the pivot value is set to the value stored at location L:

1

pivot = array[L]

array is the data set that contains the numbers to be sorted. The numbers in this
data set are then compared to the pivot. We start from the right and decrement R till
the first values less than the pivot is encountered. Once this value is found, it is copied
to position L in the data set. Now, we compare from the left by incrementing L until
the first value greater than the pivot is encountered. This value is copied to position
R in the data set. This procedure is repeated as long as L is less than R. When L and
R become equal, we copy the pivot to this position in the data set. Then, the next
index in the arrays start and end are set, and the current index of end is updated.

values[L] = pivot;

start[idx + 1] = L + 1;

end[idx + 1] = end[idx];

end[idx++] = L;

Further, if the condition:

if (end[idx]− start[idx] > end[idx− 1]− start[idx− 1])

is true, then start[idx] is swapped with start[idx − 1], and end[idx] is swapped
with end[idx− 1]. The values in the arrays start and end are used to update L and R
respectively when the code in the loop is repeated.

If L is not less than R, however, the thread index, idx, is decremented until L is
set to a value less than R. When idx becomes less than zero, the data set is sorted
and the kernel function terminates.

• Problems

As mentioned before, this algorithm is not recursive since CUDA 3.0 does not
support recursion. Therefore, the algorithm is considerably slow.

2

• Results

With 512 numbers, these are the average results:

Data set distribution Average kernel execution time
Uniform 05.2728000ms
Gaussian 16.1874002ms
Bucket 05.4554000ms
Sorted 68.8643996ms
Zero 67.8875992ms

The worst case for quicksort is evidently when the data set is sorted or has zero
distribution. Although my algorithm can sort bigger data sets, it gets extremely slow
as the data set gets bigger, especially in sorting sorted data sets or data sets with zero
distribution. For 10,000 numbers, these are the average results:

Data set distribution Average kernel execution time
Uniform 0356.177663ms
Gaussian 5043.411133ms
Bucket 0359.160003ms
Sorted 25606.53125ms
Zero 25216.32161ms

With 10,000 numbers, even though data sets with uniform and bucket distribution
are sorted within a second, it takes over 25 seconds to sort sorted data sets and data
sets with zero distribution.

3

2.2 Bitonic Sort

Bitonic sort is also a comparison sort. However, since this sorting technique is designed
specially for parallel machines, it is very efficient. A data set with N = 2k numbers
can be sorted by repeating the sorting procedure k times. In each repetition i, where
1 ≤ i ≤ k,

N

2i

sorted subsequences of length 2i are pairwise merged. The sorted subsequences al-
ternate between monotonically increasing and monotonically decreasing. Two such
consecutive subsequences form a bitonic sequence. Therefore, each repetition gives
rise to

N

2i+1

bitonic subsequences of length 2i+1. At the end of the last repetition, we are left with
a monotonically increasing sorted sequence.

4

• Procedure

In my algorithm, the kernel function is invoked through a nested loop. The outer
loop repeats the function call k times as required for the sorting to be successful. The
loop runs from k = 2 to N, incrementing by the power of 2, where N is the size of the
data set. The inner loop runs from j = k/2 to 1, decrementing by the power of two.
Therefore, k and j are always powers of two.

for (int k = 2; k ≤ N ; k �= 1) {
for (int j = k � 1; j > 0; j �= 1) {

...
Kernel function <<< . . .>>> (. . .);
...

}
}

In the kernel function, each thread index, idx, is XOR-ed with j and stored in ixj.
This ensures that ixj and idx are in the same subsequence in order to avoid redundant
comparisons. Further execution of the code is restricted by the condition:

if (ixj > idx) {
...

}

This ensures that values at the two indices, ixj and idx, are compared only once
- when ixj is greater than idx. If this condition is true, then the function checks
whether the indices belong to the monotonically increasing subsequence of the bitonic
subsequence, or the monotonically decreasing subsequence. If idx ∧ k1 equals zero, the
indices belong to the monotonically increasing subsequence of the bitonic subsequence.
If it does not equal zero, then the indices belong to the monotonically decreasing sub-
sequence of the bitonic subsequence. If idx ∧ k equals zero and the values in the
subsequence are not in monotonically increasing order, then the values are swapped.
Similarly, if idx ∧ k does not equal zero and the values in the subsequence are not
monotonically decreasing, the values are swapped. Let array contain the values to be
sorted:

1Logical AND

5

if (ixj > idx) {
if (idx & k == 0 && array[idx] > array[ixj])

swap(idx, ixj);
if (idx & k 6= 0 && array[idx] < array[ixj])

swap(idx, ixj);
}

At the end of the last repetition, we have only half a bitonic sequence. In other
words, we are left with one monotonically increasing or sorted sequence.

• Problems

One limitation of this algorithm is that the size of the data set to be sorted
must be a power of 2. That is, N must equal 2k, for some non-negative k. Also, my
algorithm can currently only sort data sets of sizes up to 222.

• Results

With 512 numbers, these are the average results:

Data set distribution Average kernel execution time
Uniform 0.2730ms
Gaussian 0.2460ms
Bucket 0.2356ms
Sorted 0.2384ms
Zero 0.2326ms

The size of the largest data set that the code can currently work with is 4,194,304.
The average results for this data set are:

Data set distribution Average kernel execution time
Uniform 98.9497984ms
Gaussian 86.9412000ms
Bucket 98.1599992ms
Sorted 76.0807982ms
Zero 72.7174012ms

6

This bitonic sort algorithm can therefore sort over 4 million numbers in less than
a second.

2.3 Radix Sort

Radix sort is different from quicksort and bitonic sort in that it is a non-comparison
sort. It sorts integers by processing individual digits and clubbing together identical
digits sharing the same significant position.

• Procedure

In my version of the algorithm, I converted each input from decimal to binary
so that instead of having to track ten different digits, 0 to 9, only two digits, 0 and 1,
would have to be tracked. After extracting the required digits from all numbers in the
data set into an array, say array1, I set a 1 for all false sort keys (or 0s) and a 0 for
all true sort keys (1s), and stored these in array2. Then I counted all the 1s in array2
by incrementing a counter everytime a 1 was encountered and stored the counter at

7

each step in array3. array3 now contains the destination address for each input that
produced a false key. The total number of false keys for N inputs can be calculated as
follows:

totalFalses = array2[N-1] + array3[N-1]

Then the destination address for each input that produced a true key is calculated
and stored in array4. For each thread index, idx, the address can be calculated as:

array4[idx] = idx - array3[idx] + totalFalses

Finally, all destination addresses are stored in an array and the input is rearranged
accordingly. The destination address pattern is a perfect permutation of the indices
of the input array. Therefore, there are no write conflicts. These steps are repeated
for each bit in a binary sequence. For instance, in my current code, I repeat the above
steps 8 times since my data set contains numbers that can be represented by 8 bits.

• Problems

The only kernel configuration that the code seems to work with is:

<<< 1, N >>>

The sort failed with other configurations I tried. With this configuration however,
I cannot run the code for a data set larger than 512 numbers.

8

• Results

With 512 numbers, these are the average results:

Data set distribution Average kernel execution time
Uniform 7.0320ms
Gaussian 7.0000ms
Bucket 6.9716ms
Sorted 6.9570ms
Zero 6.9386ms

9

3 Conclusion

Parallel sorting algorithms are much faster than sequential sorting algorithms. As
more research in the field of parallel computing produces more efficient parallel sorting
algorithms, sorting large data sets will get easier. Among the algorithms I explored,
bitonic sort is the most efficient.

10

	Sorting on CUDA
	

	tmp.1433854751.pdf.zGGg1

