Providence College

DigitalCommons@Providence

School of Business Faculty Publications

School of Business

November 2000

Quantitative Statistical Analysis for Problem Solving And Decision Making Project

Anthony Baker Providence College, abaker6@providence.edu

Follow this and additional works at: https://digitalcommons.providence.edu/business_fac

Part of the Business Commons

Baker, Anthony, "Quantitative Statistical Analysis for Problem Solving And Decision Making Project" (2000). *School of Business Faculty Publications*. 2. https://digitalcommons.providence.edu/business_fac/2

This Article is brought to you for free and open access by the School of Business at DigitalCommons@Providence. It has been accepted for inclusion in School of Business Faculty Publications by an authorized administrator of DigitalCommons@Providence. For more information, please contact dps@providence.edu.

Quantitative Statistical Analysis for Problem Solving

And Decision Making Project

12 Nov 00

By Anthony E. Baker

Johnson and Wales University MBA Program

Instructor: Martin W. Sivula Ph.D.

A Comparative Analysis of Government Regulations, Fishing Effort,

And Outside Influences on Lobster Landings for

The State of Rhode Island

Table of Contents

Thanks and Acknowledgements	П
Proposal	III
Narrative	V
Dependent Data Set - Graphics	1
Independent Data Sets - Graphics	2
Bivariate Data Groups	11
Multivariate Data Sets	20
Calculations and Surveys	22
Summary	VII
Alternate Theories	VШ
Reference List	X

I

Thanks and Acknowledgements to the following people:

John H. Nagle, Supervisory Policy Analyst, Operations Group, Sustainable Fisheries Division, Northeast Regional Office, National Marine Fisheries Service who responding quickly and on his own time to my request for Federal Permit Data.

_____, Head Librarian at Johnson and Wales University reference library who tirelessly and diligently assisted me in located required rainfall and temperature data.

Bob Smith, Former President of the RI Lobsterman's Association who gave me guidance on where to search and whom to speak with in my efforts to locate data.

Margaret McGrath, Administrative Officer, Rhode Island Department of Environmental Management for responding quickly to my request for data on RI Lobster Licenses.

Donna Prout, friend and colleague who took the time to edit and critique my work before submission.

Quantative Statistical Analysis for Problem Solving Project Proposal 12 Nov 00 By Anthony E. Baker Johnson and Wales University MBA Program

A) Background Information:

The National Marine Fisheries Service (NMFS) contends that increased regulation is required to save dwindling American Lobster stocks (Homarus Americanus) in the North Atlantic Region. Members of various trade organizations contend that the stocks are at the very least stable and probably growing. That cyclical rises and falls in the total biomass is a natural function and is altered more by pollution and habitat degradation than commercial fishing.

I intend to give an alternate theory through the use of research and statistical analysis as regards to harvest within the Rhode Island waters. These waters being defined as those within the Northeast and Southwest boundaries of NMFS Management Areas 2 and 3 that are covered by both state and federal jurisdiction.

B) The Stated Problem:

To what extent was [IV] <u>Lobster Production (1988-98)</u> in a given area altered by [I] Commercial Fishing Pressures, [II] Government Regulation, [III] Outside influences both natural and manmade?

C) Methodology:

- 1. I will first research three sub-cases gathering data from federal and state agency sources.
- 2. This data will be collated into data sets organized over time. (1988-98)
- 3. Each data set will have a corresponding histogram and time series plot created to display univariate relationships between data points within a data set.
- 4. These data sets will be compared to one another by overlaying the time series plots and using Pearson's Correlation scatter plots to determine what degree of correlation exists on a bivariate level.
- 5. The independent variable data sets stated in section (D) will be compared with the dependent variable data set Lobster Landings in Pounds.
- 6. I will then use the results of these three sub-cases as independent variables versus the dependent variable <u>Median Lobster Production (1988-98)</u> for the objective case.
- 7. These data sets will be compared to one another by overlaying the time series plots and using Pearson's Correlation scatter plots to determine what degree of correlation exists on a multivariate level.
- 8. A descriptive data set will be created to derive the coefficients, median, mean etc.
- 9. I will then create a linear model using a correlation matrix and r squared to draw inferences as to what extent all of the independent variables had on affecting the Lobster Production (1988-98) in the Rhode Island waters.
- 10. *Data will be entered hierarchical (chronologically) or step wise depending on the plots.

- D) Cases:
 - I. Commercial Fishing Pressure 1988–98 Dependent Variable – <u>Lobster Landings in Pounds (LL)</u> Independent Variables – Number of Federal Fishing Permits (FP) Number of Traps Fished (TF) Market Value of Catch (MV)
 - II. Government Regulation on Commercial Fishing 1988-98 Dependent Variable – <u>Lobster Landings in Pounds (LL)</u> Independent Variables – Number of Traps Fished (TF) State Licenses/Total Number of Fisherman (SL) Government Regulation Value Factors (GR)
 - III. Outside Influences both Manmade and Natural 1988–98 Dependent Variable – <u>Lobster Landings in Pounds (LL)</u> Independent Variables – Toxic Waste Released into the Water (TW) Average Seasonal Air Temperature (AT) Average Annual Rainfall (RF)
 - IV. The Effects of Cases I, II, III had on Lobster Production in RI 1988-98 Dependent Variable – <u>Median Lobster Production in Pounds</u> Independent Variables – Commercial Fishing Pressure Government Regulations Outside Influences

E) Data Sources:

I intend to use some of and possibly all of the following sources. It is my professional belief that these sources are the most accurate and creditable.

- > National Marine Fisheries Service
- > Environmental Protection Agency
- > The Northeast Fisheries Science Center
- > New England Fisheries Management Council
- > The National Climatic Data Center
- > The National Oceanographic and Atmospheric Administration
- > Rhode Department of Environmental Management
- Independent Surveys I Conduct

F) Criteria:

For the purpose of this study I have outlined general criteria to be followed so as to be able to have set parameters as benchmarks.

- > All numeric data will be rounded to the nearest hundred or hundredth
- > All sources of data will come from (E) Data Source list
- When two opposing sets of data or data points exist a mean or average will be determined and used.
- > Documents and interviews will be cited in accordance with APA standards

Narrative:

The purpose of this project is to provide a first step in questioning the justification used for governmental intervention in the Lobster Fishing Industry. This justification being, "The decline in lobster stocks along the North Atlantic Coast".¹

This project is NOT an exclusive scientific study. This project is NOT an exclusive socioeconomic study of the lobster industry. It does not use advanced models commonly used in either discipline. This project is a basic statistical study, which uses data provided by governmental agencies of both a scientific and economic nature and independent surveys I conducted. Using basic statistical analysis methods it compares the various data sets then draws basic logical inferences from the observations.

Steps:

- 1. I will first research three sub-cases gathering data from federal and state agency sources.
- 2. This data will be collated into data sets organized over time. (1988-98)
- 3. Each data set will have a corresponding histogram and time series plot created to display univariate relationships between data points within a data set.
- 4. These data sets will be compared to one another by overlaying the time series plots and using Pearson's Correlation scatter plots to determine what degree of correlation exists on a bivariate level.
- 5. The independent variable data sets stated in section (D) will be compared with the dependant variable data set Lobster Landings in Pounds.
- 6. I will then use the results of these three sub-cases as independent variables versus the dependent variable <u>Median Lobster Production (1988-98)</u> for the objective case.
- 7. These data sets will be compared to one another by overlaying the time series plots and using Pearson's Correlation scatter plots to determine what degree of correlation exists on a multivariate level.
- 8. A descriptive data set will be created to derive the coefficients, median, mean etc.
- 9. I will then create a linear model using a correlation matrix and r squared to draw inferences as to what extent all of the independent variables had on affecting the **Lobster Production (1988-98)** in the Rhode Island waters.
- 10. *Data will be entered hierarchical (chronologically) or step wise depending on the plots.

Hypothesis To Be Tested:

The amount of lobsters being harvested in the State of RI is too great. The end result being the long-term decline in lobster stocks and in turn the overall lobsters landings. Therefore government regulations are required to control the number of lobsters harvested through measures such as permit/license limits, minimum size of lobsters legally harvested and overall fishing effort through the reduction of traps fished.

V

¹ Paraphrased from statements made by federal NMFS and NOAA officials at various hearings from 1996 to 1999 conducted with lobster fishing trade associations.

Background on Hypothesis:

Data is currently accumulated by federal sources² and used in federal models to predict the health of lobster stocks through random sampling. These models show a decline in lobster stocks over time leading to a prediction that the trend will continue unless actions are taken. Therefore it is the position of the NMFS that regulations are required to control fishing effort. These are taking place in the form of the curtailment of new lobster license issuance, the control and decrease in the number of traps fished, and the minimum size of lobsters allowed to be harvested.

Relations and Conclusions:

While it would be easy to draw conclusions from this study, the ability to show a direct causal relationship would require in depth scientific study drawing on various disciplines within the scientific community. Also, to increase the validity of this type of study it would require encompassing all the lobster producing states and the Canadian provinces as well as more detailed and in-depth data collection that time does not allow. The intent of this project is to give *question* to accepted governmental theories through the use of basic research and statistical analysis. If *plausible* alternate possibilities do exist, demonstrate *possible* other scenarios not considered by the governing authorities and scientific community. This in turn may bring into question the validity of the results produced by current models used by these various scientific and government organizations in order to justify the ramping up of regulations starting in 1994.

Assumptions:

- 1) The sample data from agencies will be as accurate as the referring agencies deem necessary.
- 2) Surveys will have a margin of error based on the memory and records kept by the surveyed parties.
- 3) Surveys will be based on 10% sample size of a total population.
- 4) The interpretations are based on my 10 years industry experience utilizing basic accepted statistical analysis methods.

² This same data is used in this study.

Dependent Data - RI Lobster Landings In Metric Tons 1988 to 1998

1

Years	Metric Tons of Lobsters
1988	2,159
1989	2,597
1990	3,292
1991	3,377
1992	3,067
1993	2,825
1994	2,936
1995	3,433
1996	3,402
1997	3,631
1998	4,548

Statistics gathered from the National Marine Fisheries Service Website: www.st.nmfs.gov/webplcomm/plsql/webstl.MF_ANNUAL_LANDINGS.RESULTS

Independent Data Sets Used for Comparative Analysis

Independent Data			
<u>Years</u>	<u> Total # State Licenses</u>		
1988	e		
1989	214		
1990	230		
1991	275		
1992	472		
1993	1006		
1994	980		
1995	1317		
1996	11 4 3		
1997	1102		
1998	1597		
Independ	lent Data		
Years	Total Rainfall in Inches		
1988	38.37		
1989	56.06		
1990	44.78		
1991	45.69		
1992	47.48		
1993	42.16		
1994	44.69		
1995	38.24		
1996	38.06		
1997	37.97		
1998	52.70		
Independ	lent Data		
Independ Years	lent Data Total Number of Permits	1	
Independ Years 1988	lent Data <u>Total Number of Permits</u> 34	8	
independ <u>Years</u> 1988 1989	lent Data <u>Total Number of Permits</u> 34 31	1	
independ <u>Years</u> 1988 1989 1990	lent Data <u>Total Number of Permits</u> 34 31 285		
Independ Years 1988 1989 1990 1991	Ient Data <u>Total Number of Permits</u> 34 31 285 324		
Independ Years 1988 1989 1990 1991 1992	lent Data <u>Total Number of Permits</u> 34 31 285 324 368		
Independ Years 1988 1989 1990 1991 1992 1993	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346		
Independ Years 1988 1989 1990 1991 1992 1993 1994	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289		
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289 185		
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289 185 221		
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289 185 221 236		
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289 185 221 236 239		
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289 185 221 236 239 January 200	1	
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years	Ient Data Total Number of Permits 34 31 285 324 368 346 289 185 221 236 239 ient Data Est. # of Traps Fished]	
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988	Ient Data Total Number of Permits 34 31 285 324 368 346 289 185 221 236 239 ient Data Est. # of Traps Fished 458		
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988 1989	Ient Data Total Number of Permits 34 31 285 324 368 346 289 185 221 236 239 ient Data Est. # of Traps Fished 458 473]	
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988 1989 1989 1990	Ient Data Total Number of Permits 34 31 285 324 368 346 289 185 221 236 239 Jent Data Est. # of Traps Fished 458 473 544]	
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988 1989 1989 1990 1991	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289 185 221 236 239 lent Data <u>Est. # of Traps Fished</u> 458 473 544 602]	
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988 1989 1989 1990 1991 1992	lent Data Total Number of Permits 34 31 285 324 368 346 289 185 221 236 239 lent Data <u>Est. # of Traps Fished</u> 458 473 544 602 692]	
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988 1989 1990 1991 1992 1993	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289 185 221 236 239 lent Data <u>Est. # of Traps Fished</u> 458 473 544 602 692 742]	
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988 1989 1990 1991 1992 1993 1994	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289 185 221 236 239 lent Data <u>Est. # of Traps Fished</u> 458 473 544 602 692 742 771]	
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988 1989 1989 1990 1991 1992 1993 1994 1995	lent Data <u>Total Number of Permits</u> 34 31 285 324 368 346 289 185 221 236 239 lent Data <u>Est. # of Traps Fished</u> 458 473 544 602 692 742 771 846		
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1995 1996	lent Data Total Number of Permits 34 31 285 324 368 346 289 185 221 236 239 lent Data <u>Est. # of Traps Fished</u> 458 473 544 602 692 742 771 846 942		
Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 Independ Years 1988 1989 1990 1991 1992 1993 1994 1995 1994 1995 1994 1995 1994 1995 1994 1995 1994 1995 1994 1995 1997	lent Data Total Number of Permits 34 31 285 324 368 346 289 185 221 236 239 lent Data Est. # of Traps Fished 458 473 544 602 692 742 771 846 942 994]	

11419318		
Independ	ent Data	
Years	Metric Tons of Toxic Waste	
1988	10,646,338	
1989	7,706,507	
1990	6,031,507	
19 9 1	5,438,400	
1992	6,383,857	
1993	6,673,430	
1994	7,152,425	
1995	3,409,326	
1996	2,402,424	
1997	2,207,449	
1998	1,751,380	
Independ	lent Data	
Years	<u>Air Temperatures</u>	
1988	64.40	
1989	65.30	
1990	65.42	
1991	66.70	
1992	63.50	
1993	66.00	
1994	64.87	
1995	65.78	
1996	52.54	
1997	63,93	
1998	64.20	
Independ	ent Data	
Years	Market Value US \$	
1988	15,268,937	
1989	17,530,523	
1990	19,824,539	
1991	20,392,490	
1992	21,198,027	
1993	18,843,769	
1994	20,953,220	
1995	17,842,002	
1996	18,358.391	
1997	20.125.993	
1998	20.013.415	
Independ	lent Data	
Years	Values of REG Increase	
1988	0	
1989	2	
1990	0	
1991	0	
1992	ō	
1993	- 1	
1994	Å	
1995	2	
1996	- 2	
1997	2	
1998	2	
· • • •	-	

Independant Data - RI Rate of Toxic Waste Releases in Metric Tons from 1988 to 1998

Years	Metric Tons of Pollution	
1988	10,646,338	
1989	7,706,507	
1990	6,031,507	
1991	5,438,400	
1992	6,383,857	
1993	6,673,430	
1994	7,152,425	
1995	3,409,326	
1996	2,402,424	
1997	2,207,449	
1998	1,751,380	

Statistic gathered from Environmental Protection Agency New England Region Website under "Toxic Release Inventory": www.epa.gov/region01/steward/emerplan/toxic.html 3

Independent Data - RI Annual Rain Fall in Inches from 1988 thru 1998

Years	Inches of Rain Fal
1988	38.37
1989	56.06
1990	44.78
1991	45.69
1992	47.48
1993	42.16
1994	44.69
1995	38.24
1996	38.06
1997	37.97
1998	52.70

Statistics gathered from the "Weather Almanac-9th Edition" and the Climatilogical National Annual Survey. The city of Providence, RI was the measuring point. 4

Independent Data- RI Average Seasonal Air Temperature 11/11/2000 in Centigrade from 1988 to 1998

Years	Air Temperature
1988	64.40
1989	65.30
1990	65.42
1991	66.70
1992	63.50
1993	66.00
1994	64.87
1995	65.78
1996	62.54
1997	63.93
1998	64.20

*Missing 1 month of data

Statistics gathered from the "Weather Alamanac-9th Edition" and the Climatiligical National Annual Survey. The city of Providence, RI was the measuring point. 5

Independent Data - Active RI Federal Lobster Permits 1988 to 1998

Years	Total # of Federal Permits
1988	34
1989	31
1990	285
1991	324
1992	368
1993	346
1994	289
1995	185
1996	221
1997	236
1998	239

Data gathered from the Vessel Permit Data Base, National Marine Fisheries Service, Northeast Regional Office6

Years: 1=1988 thru 11=1996

Independent Data - Annual Average Number of Traps Fished per Vessel In the State of RI from 1988 to 1998

Years	Traps Fished
1988	458
1989	473
1990	544
1991	602
1992	692
1993	742
1994	771
1995	846
1996	942
1997	994
1998	1038

Data gathered from a confidential survey of Lobster Fishing Boat owner operators whose derived 50% or more of their annual income from fishing. 7

Independent Data - Market Value of RI Lobster Landings in US \$ from 1988 - 1998

Year	Value \$ Millions
1988	15,268,937
1989	17,530,523
1990	19,824,539
1991	20,392,490
1992	21,198,027
1993	18,843,769
1994	20,953,220
1995	17,842,002
1996	18,358,391
1997	20,125,993
1998	20,013,415

Data gathered from the National Marine Fisheries website: WWW:st.nmfs.gov/webpicomm/pisql/webst.1MF_LANDINGS_ANNUAL. RESULTS

9

Independent Data - State Commercial Fishing Licenses with Lobster Endorsements from 1988 to 1998

Years	Total # State Licenses	
1988	0	No Record Available
1989	214	
1990	230	
1991	275	
1992	472	
1993	1006	
1994	980	
1995	1317	
1996	1143	
1997	1102	
1998	1597	

Information gathered from the RI Department of Environmental Management, Office of Registration and Licensing, Margaret McGrath, Administrative Officer

Independent Data -Government Regulations on the Lobster Industry From 1988 to 19989

Year	Value
1988	0
1989	2
1990	0
1991	0
1992	0
1993	1
1994	4
1995	2
1996	2
1997	2
1998	2

Information gathered from the NMFS web site www.mnfs.gov and the RI DEM Regulations from 1988 through 1998. Values have been calculated for each event. *See "Government Regulation Calculation" page 10

A marked El	LL vs RE	when the second	San De Version	LL vs AT	State Part	1.2200
YR	LL	RF	YR	LL	AT	
1988	2,159	38.37	1988	2,159	64.40	
1989	2,597	56.06	1989	2,597	65.30	
1990	3,292	44.78	1990	3,292	65.42	
1991	3,377	45.69	1991	3,377	66.70	
1992	3.067	47.48	1992	3,067	63.50	
1993	2.825	42.16	1993	2.825	66.00	
1994	2,936	44.69	1994	2,936	64.87	
1995	3,433	38.24	1995	3,433	65.78	
1996	3,402	38.06	1996	3,402	62.54	
1997	3.631	37.97	1997	3.631	63.93	
1998	4,548	52.70	1998	4,548	64.20	
CARLES AND	LL vs MV	No.	CHARLES AND AND A	LL VS FP	STATISTICS.	in the second
YR	LL	MV	YR	LL	FP	
1988	2,159	15,268,937	1988	2,159	34	
1989	2,597	17,530,523	1989	2,597	31	
1990	3.292	19,824,539	1990	3.292	285	
1991	3.377	20,392,490	1991	3.377	324	
1992	3.067	21,198.027	1992	3.067	368	
1993	2 825	18,843,769	1993	2.825	346	
1994	2,936	20,953,220	1994	2,936	289	
1995	3 433	17 842 002	1995	3 433	185	
1996	3 402	18 358 391	1996	3 402	221	
1997	3 631	20 125 993	1997	3 631	236	
1998	4.548	20.013.415	1998	4.548	239	
	LL vs TW		A STATE OF THE OWNER	LL vs TF	Starting of	10150
YR	LL	TW	YR	LL	TF	
1988	2,159	10,646,338	1988	2,159	458	
1989	2,597	7,706,507	1989	2,597	473	
1990	3,292	6,031,507	1990	3,292	544	
1991	3,377	5,438,400	1991	3,377	602	
1992	3,067	6,383,857	1992	3,067	692	
1993	2,825	6,673,430	1993	2,825	742	
1994	2,936	7,152,425	1994	2,936	771	
1995	3,433	3,409,326	1995	3,433	846	
1996	3,402	2,402,424	1996	3,402	942	
1997	3,631	2,207,449	1997	3,631	994	
1998	4,548	1,751,380	1998	4,548	1038	
a long the second	LL vs GR	I PLEASE	States and States	LL VS SL		E. L.S.
YR	LL	GR	YR	LL	SL	
1988	2,159	0	1988	2,159	0	
1989	2,597	2	1989	2,597	230	
1990	3,292	0	1990	3,292	230	
1991	3,377	0	1991	3,377	275	
1992	3,067	0	1992	3,067	472	
1993	2.825	1	1993	2,825	1006	
1994	2,936	4	1994	2,936	980	
1995	3,433	2	1995	3,433	1317	
1996	3,402	2	1996	3,402	1143	
1997	3.631	2	1997	3,631	1102	
1998	4,548	2	1998	4,548	1597	

The above data was gathered from various sources cited on the separate Data Set Graphic Pages and on the last page. 11

Graphic Display of Comparative Analysis for Lobster Landings VS Toxic Waste Release

Number of cases used: 11 (1988 to 1998)

Pearson's r (Correlations Coefficient) = -0.8997 R-Square = 0.8095

Test of hypothesis to determine significance of relationship:

H(null): Slope = 0 or H(null): r = 0

(Pearson's) t = -6.183272 with 9 d.f. p < 0.001

(A low p-value implies that the slope does not = 0.)

FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
Lobsters Landed	11	3.2100	.6090	.1836	2.150	4.540	35.310
Toxic Waste	11	5436.73	2744.89	827.62	1751.38	10646.3	3 59803.99
can be inferred from	the	se charts a	and dete th	at there is	s a positiv	e affect (i	ncrease)

in Lobster Landings (LL) when compared to the reduction (decrease) of Toxic Waste (TW) released into the water. Whether it can be said that there is a direct causal relationship can only be determined when tests on the effects of the TW on lobster are conducted. *See attached list of TW.

A significant relationship between the effects of Toxic Waste (TW) released into the water and the Lobster Landings (LL) for RI. This can be inferred from a nearly normal distribution. 12

Graphic Display of Comparative Analysis for Lobster Landings VS Market Value

Number of cases used: 11 (1988 to 1998) Pearson's r (Correlations Coefficient) = 0.5310 R-Square = 0.2819 Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (Pearson's) t = 1.879782 with 9 d.f. p = 0.093 FIELD MEAN N STD SEM MIN MAX SUM Lobster Landed 11 3206.09 617.47 186.17 2159.00 4548.00 35267.00 Market Value 11 19125.30 1768.68 532.67 15268.93 21198.02 210378.26 It can be inferred from these charts and data that there is a parallel affect until 1995 in Lobster Landings (LL) when compared to the Market Value (MV). From this point on there is a inverse relationship between LL and MV probably due to supply vs demand basic economic variables of increased production and decreased demand equals the MV

No significant relationship between variables can be inferred when comparing the effects of Market Value (MV) and the Lobster Landings (LL). This can be inferred from this less than normal distribution. 13

11/11/2000

Graphic Display of Comparative Analysis for Lobster Landings VS Federal Permits

Number of cases used: 11

Pearson's r (Correlations Coefficient) = 0.3873 R-Square = 0.1500Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (Pearson's) t = 1.26011 with 9 d.f. p = 0.239FIELD N MEAN STD SEM MIN MAX SUM

LL	11	3206.09	617.47	186.17	2159	4548	35267	
FP	11	232.545	113.142	34.114	31	368	2558	

It cannot be inferred from this data or charts that there is correlating affect between Lobsters Landed (LL) when compared to the Number of Federal Permits Active (FP). While in the year 1990 there was a factor of 9.1 increase in the number of FP there was only a factor of 1.26 increase in LL. The distribution is not normal so no correlation can be exists in this relationship.

No significant relationship exists between the effects of the number of Federal Permits (FP) Active and the numbers of Lobsters Landed (LL). This can be inferred from the far less than normal distribution. 14

Graphic Display of Comparative Analysis for Lobster Landings VS Average Annual Temperatures

Number of cases used: 11

Pearson's r (Correlations Coefficient) = -0.1599 R-Square = 0.0256 Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (Pearson's) t = -.4860998 with 9 d.f. p = 0.639 FIELD N MEAN STD SEM MIN MAX SUM LL 11 3206.09 617.47 186.17 2159 4548 35267

AT 11 64.785 1.213 .366 62.540 66.700 712.640

It cannot be inferred from these charts and data that there is any correlation between Lobster Landings (LL) when compared to the Average Annual Temperatures (AT) during the fishing season. It can be inferred that there is no affect on LL by AT. Water temperature may have an affect but data on mean ocean temperatures was unavailable to me at the time of this project.

No significant relationship exists between the effects of Fishing Season Average Annual Temperatures (AT) and Lobster Landings (LL) for RI. This distribution is not normal. 15

Grapthic Display of Comparative Analysis for Lobster Landings VS Traps Fished per Vessel

Number of cases used: 11 Pearson's r (Correlations Coefficient) = 0.7826 R-Square = 0.6124 Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (Pearson's) t = 3.770985 with 9 d.f. p = 0.004 (A low p-value implies that the slope does not = 0.) FIELD N MEAN MIN MAX SUM STD SEM LL 3206.09 617.47 186.17 4548 11 2159 35267 TF 11 736.545 204.150 61.553 1038 458 8102

It cannot be inferred from these charts and data that there is any correlation between Lobster Landings (LL) when compared to the Number of Traps Fished per Vessel. While there is a general trend in the increase of LL, it does not correlate with a specific upward trend in TF. In Years 92,93, 94 there was a marked decrease in LL with a steady increase in TF. Years 90,91, 95,96 were level while there was still a steady upward trend in TF. This would infer that LL has no affect on LL.

No significant relationship exists between the effects of the Number of Traps Fished per Vessel (TF) and Lobster Landings (LL) for RI. This distribution is not normal. 16

Grapthic Display of Comparative Analysis for Lobster Landings VS Average Annual Rain Fall

Number of cases used: 11

Pearson's r (Correlations Coefficient) = 0.1472 R-Square = 0.0217

Test of hypothesis to determine significance of relationship:

H(null): Slope = 0 or H(null): r = 0

(Pearson's) t = .4464397 with 9 d.f. p = 0.666

FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM	
LL	11	3206.09	617.47	186.17	2159	4548	35267	
RF	11	44.200	6.137	1.850	37.970	56.060	486.200	

It can be inferred from these charts and data that there is a parallel affect in Lobster Landings (LL) when compared to the Average Annual Rain Fall (RF). The relationship displays an increase in LL when there is an increase in the RF and a decrease in LL when there is a decrease in RF. This maybe due to the rise or fall in water salinity produced by the influx of fresh water into the bay and sound. Lobsters require a salinity of ______ to _____ in order to inhabit an area.

A significant relationship exists between the effects of Rain Fall (RF) and the Lobster Landings (LL). This can be demonstrated from the nearly normal distribution. 17

Graphic Display of Comparative Analysis for Lobster Landings VS Government Regulations

Number of cases used: 11

Pearson's r (Correlations Coefficient) = 0.2140 R-Square = 0.0458 Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (Pearson's) t = .6572094 with 9 d.f. p = 0.527 FIELD MEAN N STD SEM MIN MAX SUM LL 11 3206.09 617.47 186.17 2159 4548 35267 GR 1 3636 1.2863 11 3878 0 15

It cannot be inferred from these charts and data that there is any correlation between Lobster Landings (LL) when compared to the effective value of Government Regulation on fishing effort The shows that while there may be a dramatic increase in fishing curtailment regulations there has no correlating decrease in the amount of lobsters landed that corresponds to these measures.

No significant relationship between the effects of Government Regulations (GR) on Fishing and Lobster Landings (LL) exists. This can be inferred from the erratic patterns of GR and the steady upward trend of LL.18

Graphic Display of Comparative Analysis for Lobster landings VS State Licenses

Number of cases used: 11 Pearson's r (Correlations Coefficient) = 0.7131 R-Square = 0.5086 Test of hypothesis to determine significance of relationship: H(null): Slope = 0 or H(null): r = 0 (Pearson's) t = 3.051747 with 9 d.f. p = 0.014 (A low p-value implies that the slope does not = 0.) FIELD N MEAN STD SEM MIN MAX SUM LL 11 3206.09 617.47 186.17 2159 4548 35267 SL 11 759.273 533.006 160.707 0 1597 8352

It can be inferred from this data that there is a parallel correlation in Lobster Landings (LL) when compared to the Total Number of State Licenses Issued [w/lobster endorsements] (SL) for six years from 1993 (6) to 1998 (11) when there is an increase in the SL and a increase in LL. While for fours years from 1989 (2) to 1992 (5) there is a inverse correlation between LL and SL. No data was available for 1988. Federal permits require state licenses but not the reverse.

A significant relationship exists variables from 1993 forward. After the dramatic increase in State Licenses and in 1993 Lobsters Landed have a parallel correlation. This is a nearly normal distribution of variables after this point?

Multivariate Data Sets Used for Multiple Regression and Correlation Matrix

Case I	Fishing Effort			
	Dependent Data	Independent Data		
Years	Metric Tons of Lobsters	Federal Permits	<u>Traps Fished</u>	Value \$ Millions
1988	2,159	34	458	15,268,937
1989	2,597	31	473	17,530,523
1990	3,292	285	544	19,824,539
1991	3,377	324	602	20,392,490
1992	3,067	368	692	21,198,027
1993	2,825	346	742	18,843,769
1994	2,936	289	771	20,953,220
1995	3,433	185	846	17,842,002
1996	3,402	221	942	18,358,391
1997	3,631	23 6	994	20,125,993
1998	4,548	239	1038	20,013,415

Fishing Effort Regulations

	Dependent Data	Independent Data		
Years	Metric Tons of Lobsters	Traps Fished	State Licenses	Government Reg's
1988	2,159	458	Û	0
1989	2,597	473	214	2
1990	3,292	544	230	0
1991	3,377	602	275	0
1992	3,067	692	472	0
1993	2,825	742	1006	1
1994	2,936	771	980	4
1995	3,433	846	1317	2
1996	3,402	942	1143	2
1997	3,631	994	1102	2
1998	4,548	1038	1597	2

Case III Outside Influences

	Dependent Data	Independent Data		
<u>Years</u>	Metric Tons of Lobsters	Toxic Waste	Rain Fali	Air Temperature
1988	2,159	10,646,338	38.37	64.40
1989	2,597	7,706,507	56.06	65.30
1990	3,292	6,031,507	44.78	65.42
1991	3,377	5,438,400	45.69	66.70
1992	3,067	6,383,857	47.48	63.50
1993	2,825	6,673,430	42.16	66.00
1994	2,936	7,152,425	44.69	64.87
1995	3,433	3,409,326	38.24	65.78
1996	3,402	2,402,424	38.06	62.54
1997	3,631	2,207,449	37.97	63.93
1998	4,548	1,751,380	52.70	64.20

Case IV Comparison of Factors for Cases I, II, III

Dependent Data	Independent Data			_
Median LL	Fishing Effort	Government Reg's	Outside Influences	
3,206	1+ Factor 2-Factors	.5+ Factors 2.5-Factors	2+ Factor 1- Factors	
	1	0.5	2	
	-2	- 2.5		

 $(x_{i}) \in \mathbb{R}^{n} (\mathbb{R} \setminus \mathbb{R})$

Fig. 1 A

Linear Regre	ession and Correl	ation		C:\\	INKS\LOB1.DB
Dependent va	riable is LL,	3 ind	ependent var:	iables, 11 cas	е з ,
Variable	Coefficient		St. Error	t-value	p(2 tail)
Intercept FP TF MV	-1053.919 -1.202006 2.0666758 .0001578		2174.8727 2.0936736 .6908945 .0001366	4845887 5741135 2.9913045 1.154747	0.643 0.584 0.020 0.286
R-Square = 0	. 6889	Adjus	ted R-Square	= 0.5556	
Analysis of	Variance to Test	Regre	ssion Relatio	On	
Source	Sum of Sqs	df	Mean Sq	F	p-value
Regression Error	2626588.17124 1186054.7	3 7	875529.39 169436.39	5.1673043	0.034
Total	3812642.90909	10			

A low p-value suggests that the dependent variable LL may be linearly related to independent variable(s).

٦

.

ì

ļ

1

ļ

Ì

ł

Ì

. •

11 - Cer

· -1,

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
LL FP TF MV $\begin{array}{cccccccccccccccccccccccccccccccccccc$	
LL $.387$ $.783$ $.53$ (.239) (.004) (.093) [11] [11] [11] FP $.337$ $.835$ (.311) (.001) [11] [11] TF $.384$ (.244) [11] [11]	
$(.239) (.004) (.093) \\ [11] [11] [11] \\ [11] \\ (.337) .835 \\ (.311) (.001) \\ [11] [11] \\ [11] \\ [11] \\ [11] \\ [11] \\ [11] \\ MV$	
[11] [11] [11] FP	
FP (.337 .835 (.311) (.001) [11] [11] TF .384 (.244) [11] [11]	
(.311) (.001) [11] [11] TF	
[11] [11] TF	
TF .384 (.244) [11] MV	
(.244) [11] MV	
[11] MV	
MV	
You: Correlation	
(p-value)	
[count]	

Decerio	tivo	Stat	ietice (Summary			CINWINKS	NLOBI DBE
				Y				
Statist	ics f	rom	database	C:\WINKS\LOB1	.DBF	Number	of record	is= 11
	YEARS	= 1	1988.0					
FIELD		N	MEAN	STD	SEM	MIN	MAX	SUM
TT	1		2159 00			2159	2159	2159
FP	1		34 000	000	000	34	34	34
TF	1		458 000	.000	.000	458	458	458
MV	1	152	268937.00	.00	.00	15268937	15268937	15268937
	YEARS	= 1	1989.0					
FIELD		N	MEAN	STD	SEM	MIN	MAX	SUM
LL	1		2597.00	.00	.00	2597	2597	2597
FP	1		31.000	.000	.000	31	31	31
TF	1		473.000	.000	.000	473	473	473
MV	1	175	530523.00	.00	.00	17530523	17530523	17530523
	YEARS	= 1	1990.0					
FIELD		N	MEAN	STD	SEM	MIN	MAX	SUM
TT.	1	1771	3292 00			3292	3292	3292
FD	1		285 000	000	000	285	285	285
TF	1		544 000	.000		544	544	544
MV	ī	198	324539.00	.00	.00	19824539	19824539	19824539
	YEARS	= 1	991.0					
FIELD	1210.0	N	MEAN	STD	SEM	MIN	MAX	SUM
	2	-						
	1		3377.00	.00	.00	3377	3377	3377
FP	1		324.000	.000	.000	324	324	324
TF	1	000	602.000	.000	. 000	602	602	602
MV	1	203	92490.00	.00	.00	20392490	20392490	20392490
ETELD	YEARS	= 1	992.0	SUL	CEM	MTN	MAN	CIM
		~	PLEAN	310		MIN		50M
LL	1		3067.00	.00	.00	3067	3067	3067
FP	1		368.000	.000	.000	368	368	368
TF	1		692.000	.000	.000	692	692	692
MV	1	211	98027.00	. 00	.00	21198027	21198027	21198027
	YEARS	= 1	.993.0					
FIELD		N	MEAN	STD	SEM	MIN	MAX	SUM
		-						
LL	1		2825.00	.00	.00	2825	2825	2825
FP	1		346.000	.000	.000	346	346	346
TF	1	100	742.000	.000	.000	742	742	742
MV.	1	188	43769.00	.00	.00	18843769	18843769	18843769
	YEARS	= 1	994.0	0000	0004			
FIELD		N	MEAN	SID	SEM	MIN	MAX	SUM
. T	1	-	2026 00			2020	0000	0000
ملت	1		2936.00	.00	.00	2936	2936	2936

Fig. 1 D 1

FP	1	2	289.000	.000	.000	289	289	289
TF	1	7	771.000	.000	.000	771	771	771
MV	1	20953	3220.00	. 00	.00	20953220	20953220	20953220
	YEARS	= 199	95.0					
FIELD		N	MEAN	STD	SEM	MIN	MAX	SUM
		-						
LL	1	3	3433.00	. 00	. 00	3433	3433	3433
FP	1	1	185.000	.000	.000	185	185	185
TF	1	8	346.000	.000	.000	846	846	846
MV	1	17842	2002.00	. 00	. 00	17842002	17842002	17842002
	YEARS	= 199	96.0					
FIELD		N	MEAN	STD	SEM	MIN	MAX	SUM
		_						
T.T.	1		3402.00	.00	.00	3402	3402	3402
FP	1	2	21 000	000	000	221	221	221
TE	1	à	42 000	000	000	942	942	942
MV	ī	18358	391.00	.00	.00	18358391	18358391	18358391
		100						
	YEARS	= 199	7.0					~ ~ ~ ~
FIELD		N	MEAN	STD	SEM	MIN	MAX	SUM
		171						
LL	1	3	3631.00	.00	.00	3631	3631	3631
FP	1	2	36 000	.000	.000	236	236	236
TF	1	9	94 000	.000	.000	994	994	994
MV	1	20125	5993.00	.00	.00	20125993	20125993	20125993
	YEARS	= 199	8.0					
FIELD		N	MEAN	STD	SEM	MIN	MAX	SUM
LL	1	4	548.00	.00	.00	4548	4548	4548
FP	1	2	39.000	.000	.000	239	239	239
TF	1	1	.038.00	. 00	.00	1038	1038	1038
MV	1	20013	415.00	. 00	.00	20013415	20013415	20013415

Bar Chart: C:\WINKS\LOBCASE2.DBF

Fig. 2 A

Dependent va	riable is LL, 3	ind	ependent vari	ables, 11 cas	:ө <i>з</i> .
Variable	Coefficient	91 I	St. Error	t-value	p(2 tail)
Intercept	1520.8734		959.03929	1.5858301	0.157
ΓF	2.3488605		1.9846485	1.1835146	0.275
SL	. 1962944		.8304833	.2363617	0.820
GR	-141.959		139.08438	-1.020668	0.341
R-Square = 0	.6658	Adjus	ted R-Square	= 0.5226	
Analysis of	Variance to Test	Regre	ssion Relatio	n	
Source	Sum of Sqs	df	Mean Sq	F	p-value
Regression	2538407.94059	3	846135.98	4.6482415	0.043
	1074055		100000 57		

A low p-value suggests that the dependent variable LL may be linearly related to independent variable(s). (p-value (count)

1

Ī

1

1

1

1

Linear Regre	ssion and Correl	ation			C:\WIN	KS\LOB3.1	DBF
Dependent va	riable is LL,	3 inc	lependent var	iables, 11	cases		
Variable	Coefficient		St. Error	t-value	· · ·	p(2 tai)	1)
Intercept TW RF AT	897.77585 0002125 23.560853 37.384008		4631.4208 .000032 13.895186 73.046843	.19384 -6.6467 1.69561 .51178	46 54 26 13	0.852 <.001 0.134 0.625	
R-Square = 0	. 8711	Adjus	sted R-Square	= 0.8158	····,		
Analysis of	Variance to Test	Regre	ession Relati	on marker			
Source	Sum of Sqs	df	Mean Sq	. 🖉 .		p-value	
Regression Error	3321070.83822 491572.07	3 7	1107023.612 70224.582	74 15.7640	47	0.002	
rotal	3812642.90909	10	· · · ·				
		•					
			· · · · · · · · · · · · · · · · · · ·				

atri	ix of Correlat	tion Coef	ficier	nts		C:\W	INKS\LOB3.DBF
			_~~~				
+	LL	₩T	RF	AT			
L		898 (0.0) (.666)	(.639)			
		[11] [11]	[11]			
W			.106	. 291			
		(Г	.757)	{.386} [11]			
_		L					
ľ				(.604)			
				[11]			
Т							
	6ii						
ey;	(p-value)						
	[count]						
				5 5. St.	2 - 14 - 14 - 1 4		

Fig. 3 D

Descrij	ptive Stat	tistics, S	ummary 		<i></i>	C:\WINKS	-
Statis	tics from	database	C:\WINKS\LOB	3.DBF	Number	of record	ls= 11
	VFAR - 19	0 88					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
LL	1	2159.00	. 00	. 00	2159	2159	2159
TW	1 10€	546338.00	.00	.00	10646338	10646338	10646338
RF	1	38,370	,000	.000	38.370	38.370	38.370
АŤ	1	64.400	.000	.000	64.400	64.400	64.400
	YEAR = 19	89.0					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
———— Т.Т.	- 1	2597 00	 	 nn	2597	 2597	 2597
τw	1 77	706507.00	.00	.00	7706507	7706507	7706507
RF	1	56 060	. 000	.000	56.060	56.060	56.060
AT	1	65 300	.000	. 000	65.300	65.300	65.300
	YEAR = 19	990.0					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
	1	3292 00		 00	3292	3292	3292
TW	1 60)31507.00	.00	.00	6031507	6031507	6031507
RF	1	44.780	.000	.000	44.780	44.780	44.780
AT	1	65.420	. 000	.000	65.420	65.420	65.420
	YEAR = 19	91.0					
FIELD	N	MĒAN	STD	SEM	MIN	MAX	SUM
LL	1	3377.00	.00	.00	3377	3377	3377
TW	1 54	38400.00	. 00	. 00	5438400	5438400	5438400
RF	1	45.690	.000	. 000	45.690	45.690	45.690
АТ	1	66.700	.000	.000	66.700	66.700	66.700
	YEAR = 19	92.0					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
 T T	· 1	3067 00			2067	2067	2067
TW	1 63	83857 00	00	00	6383857	6383857	6383857
RF	1	47.480	.000	. 000	47,480	47.480	47.480
AT	1	63.500	.000	,000	63 500	63,500	63.500
	YEAR = 19	93.0					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
 r r	- 1	2025 00					
L.L. 13.)	1 66	2825.UU	.00	. UU	2825	2825	2825
RF	1 00	42 160	.00 000	.00 ሰሰብ	42 160	42 160	12 160
AT	1	66.000	.000	.000	42.100	42.100	42.100
	YEAR $= 19$	94.0					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
LL	- 1	2936.00	. 00	.00	 2936	2936	2936
							
		na h	Ft. 3 F	an a	n mang dagatan seri di kenang sabat Kabapan ang mang dagatan mili		na na s
			P10. 5 P	. 1			

.

.

77.1	1 7	152425 00	0.0	0.0	7152425	7152425	7152425
IW	1 1	152425.00		000	11 690	11 690	11 690
RF	1	44.090	.000	. 000	64 070	64 070	64.030
AI	1	64.870	.000	.000	64.0/0	64.070	64.070
	YEAR = 1	995.0					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
	-						
LL	1	3433.00	.00	.00	3433	3433	3433
TW	1 3	409326.00	.00	.00	3409326	3409326	3409326
RF	1	38,240	.000	.000	38.240	38.240	38.240
AT	ī	65.780	. 000	.000	65.780	65.780	65.780
	YEAR = 1	996.0					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
	-						
I.I.	1	3402.00	.00	.00	3402	3402	3402
TW	1 2	402424.00	.00	.00	2402424	2402424	2402424
RF	1	38,060	.000	.000	38.060	38.060	38,060
AT	1	62.540	.000	.000	62.540	62.540	62.540
	YEAR = 1	997.0					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
	-						
LL	1	3631.00	.00	.00	3631	3631	3631
TW	1 2	207449.00	.00	.00	2207449	2207449	2207449
RF	1	37,970	.000	.000	37.970	37.970	37,970
AT	ī	63.930	.000	.000	63.930	63.930	63.930
	YEAR = 1	998 0					
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
	-						
LL	1	4548.00	.00	.00	4548	4548	4548
TW	1 1	751380.00	.00	.00	1751380	1751380	1751380
RF	1	52.700	.000	.000	52.700	52.700	52.700
AT	1	64.200	.000	.000	64.200	64.200	64.200

Fig. 3 E 2

Line Chart: C:\WiNKS\LOBCASE4.DBF

Fig. 4 A

e transformation and the second

t,

For each bivariate relationship within each case that has a NO SIGNIFICANT effect a Negative Factor of 1 is assigned.

This chart reveals the effect each case has on the base line of Lobsters Landed (LL).

1

It can be infered from this chart and the data that was used to construct it that government regulations to have the least effect on the amount of Lobsters Landed (LL) and that Outside Influences (OI) has the greatest effect on Lobsters Landed (LL).

Case IV WINKS 4.62	2					November	5,2000
Descriptiv	ve Stai	tistics, S	 ummary 		C:\W	INKS\LOBCA	SE4.DBF
Statistics	s from	database	C:\WINKS\LC	DBCASE4.DBF	Number o	f records=	: 2
FIELD	N	MEAN	STD	SEM	MIN	MAX	SUM
BASE_LINE FE GR OI	2 2 2 2 2	.0000 5000 -1.0000 .5000	.0000 2.1213 2.1213 2.1213 2.1213	.0000 1.5000 1.5000 1.5000 1.5000	-2 -2.500 -1	0 1 . 500 2	0 -1 -2 1

22

ł

11/5/00 **Temprature and Rainfall Data Comparisons and Calculations** for 1988 - 1998

NWS Averages							
MAY			JUNE			JULY	
58.00	Average T	emprature	67.00) Average T	emprature	73.00	Average Temprature
3.60	Total Rain	fall	2.90) Total Rain	fall	3.10	Total Rainfall
AUG.			SEP.			ост.	
71.00	Average T	emprature	63.00) Average T	emprature	53.00	Average Temprature
3.90	Total Rain	fall	3.50) Total Rain	fali	3.60	Total Rainfall
1988 - 1998 Data	1 missing f	ield for Tem	prature, 2 l	missing field	ls for Rainfall		
MAY		-	JUNE			JULY	
58.41	Average T	emprature	68.32	Average T	emprature	72.95	Average Temprature
3.14	Total Rain	fall	2.18	Total Rain	fali	3.07	Total Rainfall
AUG.			SEP.			OCT.	
72.09	Average T	emprature	63.85	Average T	emprature	53.40	Average Temprature
3.92	Total Rain	fall	3.71	Total Rain	fall	3.76	Total Rainfall
Average Tempratu	re Data fro	m the Natio	nal Weath	er Almanad	- 9th Edition		
	May	June	July	August	September	October	Annual Average
1988	58.00	66.90	74.30	75.30	63.00	48.90	64.40
1989	59.30	68.70	72.30	72.10	65.30	54.10	65.30
1990	56.00	67.70	73.00	73.50	63.70	58.60	6 5. 42
1991	63.90	69.30	74.20	73.60	63.10	56.10	66.70
1992	57.60	67.30	70.30	70.10	64.00	51.70	63.50
1993	61.80	69.30	74.50	73.80	65.10	51.50	66.00
1994	56.50	69.40	76.20	69.90	63.00	54.20	64.87
1995	57.30	68.30	75. 8 0	73.50	62.80	57.00	65.78
1996	57.40	68.10	N/R	71.00	64.10	52.10	62.54
1997	55,40	68.10	73.70	70.60	64.00	51.80	63.93

1998 Monthly Averages 58.41

L

Î

Total Rain Fall Data from the National Weather Almanac - 9th Edition

68.40

63.32

72.20

72.95

59.30

	May	June	July	August	September	October	Annual Average
1988	2.83	C.91	5.73	0.95	2.38	1.77	2.43
1989	6.07	5.84	5.59	6.14	4.75	8.37	6.13
1990	5.70	1.13	3.52	3.74	2.28	4.96	3.56
1991	3.30	0.93	2.76	5. 98	5.09	2.65	3.45
1992	1.42	4.61	3.59	6.06	5.09	1.53	3.72
1993	1.12	1.40	2,18	1.23	4.08	3,55	2.26
1994	2.98	2.70	1.34	6.34	4.12	0.40	2.98
1998	2.83	2.89	1.17	1.80	4.06	6.37	3.19
1996	2.44	2.17	5.57	2.19	5.72	6.20	4.05
1997 (2.68	2.23	0.96	6.32	0.99	1.80	2.50
1998	<u>N/R</u>	N/R	1.37	2.39	2.30	3.78	2.46
Monthly Averages	3.14	2.48	3.07	3.92	3.71	3.76	3.34

69.60

72.09

64.30

63.85

ورجام ومعروب

51.40

53.40

64.20

64.79

All Data was gathered from the "Weather Alamanac - 9th Edition", the "Climatolicical National Annual Survey" and the National Weather Service Website "www.nws.gov/annual/averages" for the city of Providence.

11/11/2000

Pt Judith/Si	nug Harbor								
Year/Boat	1	2	3	4	5	6	7	8	Average
1988	450	400	600	500	400	400	500	600	481.25
1989	450	400	600	500	400	400	600	600	493.75
1990	450	600	600	625	400	500	700	600	559.38
1991	550	600	600	625	800	500	800	600	634.38
1992	650	800	800	750	800	500	900	800	750.00
1993	750	800	800	750	800	600	1000	800	787.50
1994	750	800	800	875	800	600	1100	800	815.63
1995	850	1000	800	875	1200	600	1200	800	915.63
1996	950	1000	1000	1000	1200	800	1300	1000	1031.25
1997	1050	1200	1000	1000	1200	800	1400	1000	1081.25
1998	1200	1200	1000	1125	1200	800	1500	1000	1128.13
Newport/Ja	mestown/T	iverton							
Year/Boat	1	2	3	4	5	6	7	8	Average
1988	600	400	400	400	500	450	400	500	456.25
1989	600	400	400	400	600	450	400	500	468.75
1990	600	400	600	500	700	450	500	625	546.88
1991	600	800	600	500	800	550	500	625	621.88
1992	800	800	800	500	900	650	500	750	712.50
1993	800	800	800	600	1000	750	600	750	762.50
1994	800	800	800	600	1100	750	600	875	790.63
1995	800	1200	1000	600	1200	850	600	875	890.63
1996	1000	1200	1000	800	1300	950	700	1000	993.75
1997	1000	1200	1200	800	1400	1050	800	1000	1056.25
1998	1000	1200	1200	800	1500	1200	900	1125	1115.63
Warwick/Ea	st Greenwi	ch/Wickfor	d	100	0.				
Year/Boat	1	2	3	4	5	6	7	8	Average
1988	500	400	450	400	500	450	400	400	437.50
1989	500	400	450	400	500	600	400	400	456.25
1990	625	500	450	500	625	600	500	400	525.00
1991	625	500	550	500	625	600	500	500	550.00
1992	750	500	650	500	750	750	500	500	612.50
1993	750	600	750	600	750	750	600	600	675.00
1994	875	600	750	600	875	750	600	600	706.25
1995	875	600	850	600	875	750	600	700	731.25
1996	875	600	950	800	875	900	700	700	800.00
1997	1000	700	950	800	1000	900	700	700	843.75
1998	1000	700	1050	800	1000	900	700	800	868.75
Average Nu	mber of Tra	aps Fished	Each Year						
L	1988	1989	1990	1991	1992	1993			
L	458.33	472.92	543.75	602.08	691.67	741.67			
F	1994	1995	1996	1997	1998				
1	770.83	845.83	941.67	993.75	1037.50				

Data was gathered from survey conducted of 24 lobster fishing boat owners operators who derived at least 50% of their annual income from fishing. 23

Value Calculations for Government Regulation Implementation

Min Lobster Size Increase Iniatitive Incremental Increase / Values							
1988		0					
1989		1					
1990		0					
1991		0					
1992		0					
1993		0					
1994		1					
1995		0					
1996		0					
1997		0					
1998		0					
Total		2					

Value=1per lobster size increase

Trap Reduction Iniatitive Traps per vessel allowed / Values							
1988	1200+	0					
1989	1200+	0					
1990	1200+	0					
1991	1200+	0					
1992	1200+	0					
1993	1200+	0					
1994	1200+	0					
1995	1200+	0					
1996	1200+	0					
1997	1200+	0					
1998	1200+	0	191				
Total	1200	0					
Value = 1 p	er 100 traps	s reduced					

License Moratorium Chronology

Value

Number

Value = 1 per year of moratorium

Per Year / Values

Year

Total

Min Escape Vent Size Increase							
Incremental Increases / Values							
Year	Size	Value					
1988		0					
1989		1					
1990		0					
1991		0					
1992		0					
1993		0					
1994		1					
1995		0					
1996		0					
1997		0					
1998		0					
Total		2					

Value=1per escape vent size increase

Permit Moratorium Chronology					
Per Year / V	alues/	-			
Year		Value			
1988		0			
1989		0			
1990		0			
1991		0			
1992		0			
1993		0			
1994		1			
1995		1			
1996		1			
1997		1			
1998		1			
Total	0	5			

Value = 1 per year of moratorium

Values per Year Summations					
Per Year / Values					
Year	Number	Value			
1988		0			
1989		2			
1990		0			
1991		0			
1992		0			
1993		1			
1994		4			
1995		2			
1996		2			
1997		2			
1998		2			
Total		15			

Value = Annual totals per category

				4	i
	۳.	2	L.	а	
	4	c	-	-	,
. 1	-	-			٢

Summary:

The data collected was categorized into three studies, univariate over time, bivariate over time, and multivariate over time. Comparisons of this data were made using various accepted statistical analysis techniques. In most cases data was entered in a chronological manner because the hypothesis is based on a trend over time. In the final case data was entered using forced entry using my background in the industry to make judgments on what order to be used. Measures are made quantitatively using standard unit of measures or assigned values after calculation when standard measures weren't appropriate. When ever possible, alternate explanations for plausible causal relationships have been rendered using known and established information. When no alternate explanation is apparent in depth scientific studies are called for.

Documentation:

All sources have been referenced in the last page of this study using the APA format. Data used was gathered from sources three major areas are generally accepted as reliable.

- 50% of the data gathered was either used by and/or provided by several governing agencies and the scientific community in the form of printed or electronic media available to the general public.
- 25% of the data gathered was from "Official Requests for Information" to appropriate agencies under the Freedom of Information Act.
- 25% of the data was gathered through the use of face-to-face or telephonic interviews and surveys taken by the author.

Comparisons:

Univariate - Data points for an eleven-year period starting in 1988 and ending in 1998 were organized and graphically displayed using histograms and time series plots. Each data point was compared to the next chronologically using one calendar year summations. This was done in order to determine any significant trends from one year to the next.

Bivariate - Various independent data sets were compared to the dependent data set (lobster landings in metric tons). The data was graphically displayed using time series plots and scatter plots. Each data set was compared to the next chronologically using the eleven-year time line. Linear regression, Pearson's correlation, comparison of the basic descriptive statistical data, and any observed correlations in the graphs were used to determine if any significant correlation could be inferred from these data sets.

Multivariate Analysis:

Taking the results from the Univariate comparisons three cases were formed. They were fishing effort (FE), government regulations (GR), outside influences (OI). Each one of these cases compare three independent variables related to the particular case with dependent variable of lobsters landed (LL). A forth case was created comparing the three studies between themselves as independent variables versus the dependent variable median lobster landings. Values were calculated and assigned to each bivariate comparison. The data was then graphically displayed so as to compare all the variables over time. This was done using various graphing techniques such as base line charts, time series plots, line charts and bar charts. Statistical summaries by chronological group, correlation matrixes, and multivariate were used as the descriptive statistical data.

Quantification:

Significant Relationship Inferences - Significance was inferred by the observation of data points over time having or not having a parallel or inverse relationship. That is to say was there a proportionate increase or decrease of the independent data point as compared to the dependent data at the same point in time.

Significant Relationship Quantification - So as to be able to quantify resulting observation a three level scale was used. If three or less continuous independent data points did not correlate than it was inferred that no significant relationship existed. If 4 to 7 independent data points correlated then it was inferred that a moderate significance existed. If 8 or more existed then it was inferred that a strong relationship existed.

Assigning Value - For Case IV if a moderate significance was inferred a +.5 value was given. If a strong relationship is inferred it was given a value of +1. If no significant relationship was inferred it was given a value of -1. These values were used to display the existing relationships between cases I, II, and III, as compared to a baseline of 0 on a baseline chart.

Cause and Effect:

Due to the factors of time (11 weeks) and resources (no funding) not all possible studies on every possible scenario were conducted. While **no absolute** causal relationship can be established (this would require a in depth scientific study) there are significant relationships, which can be inferred with a high degree of certainty. The results are so obvious as to bring in to question the validity of positions held by the scientific and government community. The three cases presented where there is enough of a significant relationship to infer that it is highly likely to be a causal relationship are Toxic Waste Releases (TW), Rain Fall (FR) and Traps Fished (TF).

Alternate Theories:

Scientific studies utilizing experiments that would determine to what extent the effects of TW taking each component listed could be conducted. Combinations of elements and amounts of each one could be established by use of computer simulations then actual experiments could be conducted by introducing these elements at various rates into the observed, closed test environments to determine the effect on the test animals. A similar study could be done with salinity/sediment levels in a water table although basic data currently exists concerning these effects thereby addressing the RF correlation.

In regards to traps fished, the position that fishing effort is a root cause to an eventual stock decline and possible collapse (as taken by the government and scientific community) is an assumption that could be quantified and verified (or dismissed) through studies on the following possible scenarios.

- That all marine life is cyclical in nature because of there required coexistence in the ecosystem. The decline in predators fish due to ground fish over fishing, decrease in toxic waste released into the water due to the "Clean Water Act" and the change in salinity/water temperature due to the "Green House Effect" has actually increased the lobster stocks over time.
- 2) That by decreasing the number of traps fished the results will only increase the number of lobsters caught per trap. Their by increasing the return on effort (ROE) from the current average of 1 pound per pot per haul seasonally.
- 3) That there are so many fisherman, fishing so many traps, the amount of bait in the water (in fact an artificial condition) has created an environment where lobsters have a man made habitat where juveniles under legal harvest size have additional advantages towards survival. Food and shelter that would otherwise not be present in the ecosystem is placed by the fisherman, there by assisting sub legal size lobsters to live and breed safely until reaching harvestable size.

These are the most popular contentions held by the fishing community. Scientific studies could be easily conducted and statistical models constructed to quantify or dismiss these contentions. They are directly related to the TF case.

There are currently studies in existence, underway or recently funded that may address these possibilities. Two of which are:

Study to Predict Lobster Catch Funded - The Maine/New Hampshire Sea Grant Program was recently awarded funding from National Sea Grant for a three-year project called "Developing Indices Necessary for Predicting Commercial Catches of the American Lobster". The three year project, researchers will develop and test techniques to predict lobster landings at study sites in coastal waters of Long Island Sound, Rhode Island, New Hampshire, and Maine.

"The Fate of Bait" - Dr. Robert Steneck of the University of Maine conducted an experiment with graduate students where lobsters were observed crawling into and out of the forward chambers of lobster traps to feed on redfish, herring, and other bait fish or stealing pieces of bait through the slats of the traps. They were even observed crawling into empty traps. Dr. Robert Steneck concluded that, "Baited lobster traps may actually be the largest aquaculture effort in the world."³ Shortly after all the traps were removed from the fishing grounds, the lobsters left the area, too.

Information gathered from the "The Fate of Bait" study and from the University of Maine's Lobster Institute shows there are various scientific explanations. One of which is that contention #5 may be a large factor. "Research has found that lobsters have definite opinions as to the type of ocean bottom they prefer. Given the option of settling down on mud, sand, gravel, or cobble (small stones), they all gravitated to the cobble bottom where they could hide from predators in the spaces between the rocks and still catch falling food. "Adolescent" lobsters (a few years old to market size) prefer areas with larger boulders. Adult lobsters don't seem to care--they'll go anywhere and sometimes migrate long distances. They also have fewer predators today."⁴

Dr. Steneck also did an observed study where he created what he defined as a "lobster condo" by taking sections of PVC pipe, attaching them together and placing the "condo" on the sea bottom in areas historically inhabited by lobsters. His observations show that it was, "quickly inhabited by sub legal juvenile lobsters".⁵

It would seem that the scientific community has enough evidence in the form of studies conducted by long time reputable members of there community to warrant a full study into these three possible explanations provided by the opposing fishing industry. This would in turn lay to rest logical opposition as it can currently be assessed or give credence and confirmation to questions raised by the fishing community.

- ⁴ Quoted from "A lobsters life cycle" University Maine Lobster Institute, web address http://octopus.gma.org/lobsters/society.html
- ⁵ Quoted from the "Fate of Bait" study conducted by Dr. Robert Steneck of the University of Maine and "A lobsters life cycle" University Maine Lobster Institute, web address http://octopus.gma.org/lobsters/society.html

³ Quoted from the "Fate of Bait" study conducted by Dr. Robert Steneck of the University of Maine

References:

National Marine Fisheries Service. <u>Annual Landings Results North Atlantic Lobster 1988</u> <u>through 1998</u>. Retrieved 10 October 2000, from the World Wide Web: http://www.st.nmfs.gov/webplcomm/plsql/webstl.MF_ANNULA_LANDINGS.RESULTS.html

Environmental Protection Agency. <u>New England Region Toxic Waste Release Inventory</u> <u>1988 through 1998</u>. Retrieved 11 October 2000, from the World Wide Web: http://www.epa.gov/region01/steward/emerplan/toxic.html

National Weather Service. (1999). <u>Weather Almanac</u> (9th ed.) Washington, DC: United States Printing Office

National Climate Data Center. (2000). <u>Climatilogical National Annual Survey –1999</u> Washington, DC: United States Printing Office

Official request for information under the "Freedom of Information Act" Received 16 October 200 from John Nagel, Supervisory Policy Analyst, Operations Group, Sustainable Fisheries Division, Northeast Regional Office, National Marine Fisheries Service

Official request for information under the "Freedom of Information Act" Received 23 October 2000 from Margaret McGrath, Administrative Officer, Rhode Island Department of Environmental Management Office of Licenses and Registration.

Rhode Island Fisheries Regulations published and implemented from 1988 through 1998

Federal Fisheries Regulations published and implemented from 1988 through 1998

Lobster Management Areas

THE BASICS

Home Contact Us About Us Links Pictures

INFORMATION

The Lobster Fishery Map of Mgt Areas Glossary Lobster Length-Weight Mortality Rates Annual Landings Overfishing Defined Fishery Bloeconomics Catch & Effort

FILES TO

DOWNLOAD Lobster Business Models Fish Mgt, Silde Show

KEY CONCEPTS

Recruit Overfishing Growth Overfishing Fishing Mortality Conservation Payoff Targets vs Thresholds

Owners Suite

.

.

American Lobster Management Areas

~

Page 1 of 2

THE BASICS

Home Contact Us About Us Links Pictures

INFORMATION

The Lobster Fishery Map of Mgt Areas Glossary Lobster Length-Weight Mortality Rates Annual Landings Overfishing Defined Fishery Bioeconomics Catch & Effort

FILES TO

DOWNLOAD

Lobster Business Models Fish Mgt. Slide Show

KEY CONCEPTS

Recruit Overfishing Growth Overfishing Eishing Mortality Conservation Payoff Targets vs Thresholds

The "Definition of Overfishing" for the Lobster Resource

"The American lobster resource is overfished when it is harvested at a rate that results in egg production from the resource, on an egg-per-recruit basis, that is less than 10% of the level produced by an unfished population." (Atlantic States Marine Fisheries Commission Amendment #3 to the Interstate Fishery Management Plan for Lobster)

This official definition of overfishing can also be explained as follows: The average female lobster should be allowed to live long enough to produce at least 10% of the eggs that she would produce if she were allowed to live her natural life.

While it may seem impossible to judge the egg production from an unfished population, considering that the lobster population has been heavily fished for over 100 years, it should be considerably easier to calculate the egg production from a female that lived a natural life span. If we know how often a female produces eggs, how many eggs she produces each time, and how many years she is likely to live, we can calculate how many eggs she would produce over her life time.

.

• •

. میں انجاب کی میں ان انجاب کی میں انجاب ک