
Providence College Providence College 

DigitalCommons@Providence DigitalCommons@Providence 

Mathematics & Computer Science Student 
Scholarship Mathematics & Computer Science 

Spring 4-22-2019 

Using Neural Networks to Classify PDEs Using Neural Networks to Classify PDEs 

Julia Balukonis 
Providence College 

Sabrina Fuller 
John Tyler Community College 

Haley Rosso 
University of Houston 

Follow this and additional works at: https://digitalcommons.providence.edu/computer_science_students 

 Part of the Computer Sciences Commons, and the Mathematics Commons 

Balukonis, Julia; Fuller, Sabrina; and Rosso, Haley, "Using Neural Networks to Classify PDEs" (2019). 
Mathematics & Computer Science Student Scholarship. 4. 
https://digitalcommons.providence.edu/computer_science_students/4 

This Poster is brought to you for free and open access by the Mathematics & Computer Science at 
DigitalCommons@Providence. It has been accepted for inclusion in Mathematics & Computer Science Student 
Scholarship by an authorized administrator of DigitalCommons@Providence. For more information, please contact 
dps@providence.edu. 

https://digitalcommons.providence.edu/
https://digitalcommons.providence.edu/computer_science_students
https://digitalcommons.providence.edu/computer_science_students
https://digitalcommons.providence.edu/computer_science
https://digitalcommons.providence.edu/computer_science_students?utm_source=digitalcommons.providence.edu%2Fcomputer_science_students%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.providence.edu%2Fcomputer_science_students%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=digitalcommons.providence.edu%2Fcomputer_science_students%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.providence.edu/computer_science_students/4?utm_source=digitalcommons.providence.edu%2Fcomputer_science_students%2F4&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dps@providence.edu


Using Neural Networks to Classify PDEs
Julia Balukonis1, Sabrina Fuller2, and Haley Rosso3

2019 Mathematics REU at The Georgia Institute of Technology

Abstract
We designed two neural networks that can learn how to
classify three different types of partial differential equa-
tions (PDEs). Our data consists of numerical solutions to
three categories of PDEs: Burger’s, Diffusion, and Trans-
port equations. Using TensorFlow and the Keras library,
we performed two tasks - the first a binary classification
of Burger’s and Diffusion equation data, and the second a
multi-label classification incorporating the Transport Equa-
tions as well. Our binary classification network requires
vector labels to perform efficiently. Furthermore, our ter-
tiary classification network continues to show that vector
labeling provides the most accurate predictions. Our net-
works consistently make more accurate classifications and
predictions than other classification tools, particularly Clas-
sification and Regression Trees (CART) and Support Vec-
tor Machine (SVM).

Introduction

A neural network is a computing architecture that
models the relationship between the input data and
its labels by composing linear and nonlinear activa-
tion functions. Appropriately designed, it can match
data to its label as closely as possible.

The diagram below depicts a simple visualization of
a neural network.

The activation function at the kth neuron in the
l + 1 layer would be denoted as

al+1
k = σ(zl+1

k )
where

zl+1
k = ∑

j
wl+1
kj a

l
j + bl+1

k

The cost function is the difference between what
the neural network outputs and the desired value.
We notate this as

L = (a− y)2

2

Neural Network Architecture

Gradient descent can be imag-
ined as a ball rolling down a
valley; as it descends, it con-
tinually travels in the steepest
direction, much like finding a
local or global minimum in a
function.

A neural network minimizes the loss by updating the
weights and biases between its nodes, notated as:

blj ← blj − η
∂L
∂blj

and wl
jk ← wl

jk − η
∂L
∂wl

jk

.

Backpropagation
Backpropagation is the process of a network first running
untrained and then correcting itself based on its own miscal-
culations in order to minimize cost. This is done by finding
the partial derivative of the previous layer’s cost function
with respect to the weights and biases. The adjustments in
loss begin in the last layer L and proceed to the previous
layer L− 1 until it reaches the initial layer of the network.

∂L
∂wL

jk

= ∂L
∂aLj
· ∂a

L
j

∂zLj
· ∂z

L
j

∂wL
jk

∂L
∂zLj

= ∂L
∂aLj
· ∂a

L
j

∂zLj
= ∂L
∂aLj

σ(zLj )

Now, for an arbitrary middle layer:
∂L
∂zlj

= ∑
k

∂L
∂zl+1

k

· ∂z
l+1
k

∂zlj
= ∑

k
wl+1
kj

∂L
∂zl+1

k

σ(zlj)

Back propagation in a multi-layer neural network
can be visualized in the figure below.

Applications

We devised two experiments to design this feed-
forward network, the first a binary classifier of
Burger’s and Diffusion equations, and the second a
network able to identify 3 partial differential equa-
tions. Both experiments were conducted using Ten-
sorFlow and its Keras Library.

PDE General Forms

Burger’s:

ut = −uux

Diffusion:

ut = 0.1uxx

Transport:

ut = −ux

Our network consisted of 4 layers activated by the
ReLU, Tanh, and Softmax functions. To observe
the network’s loss, we used the mean absolute error
function. To then optimize the network, we imple-
mented a learning rate (η) of 0.0015.

Layer Number of Neurons Activation Type
Input Layer 400 ReLU

2 150 Tanh
3 50 ReLU

Flatten n/a n/a
Output Layer n Softmax

Binary Classification

After 20 epochs while using labels of 0 and 1, this
model minimized loss at approximately 25% (left fig-
ure below). However, the accuracy oscillated over
the iterations (right figure below).

Multi-Label Classification

After a total of 20 epochs, with labels of


1
0
0


,



0
1
0


,



0
0
1


,

this model was able to minimize cost to approxi-
mately 18% (left figure below) and maximize accu-
racy at approximately 91% (right figure below) dur-
ing this run.

Other Machine Learning Methods

We compared our neural
network results with CART
and SVM. Both methods re-
turned accuracies of approx-
imately 43−93%. A major-
ity of these predictions were
about equal the probability
of flipping a coin.

Acknowledgements

We would like to thank our advisors, Dr. Micheal
Lacey, Dr. Wenjing Liao, and Dr. Hao Liu for their
immense help throughout the REU. We would also
like to thank the National Science Foundation and
The Georgia Institute of Technology for their fund-
ing and support.

References

[1] Michael Nielson. "Neural Networks and Deep Learning ".
The World Wide Web.
http://neuralnetworksanddeeplearning.com/

Contact Information: 1Providence College, jbalukon@friars.providence.edu; 2John Tyler Community College, sf8ez@virginia.edu; 3University of Houston, hrosso@uh.edu


	Using Neural Networks to Classify PDEs
	

	Using Neural Networks to Classify PDEs.3cm

