Providence College DigitalCommons@Providence

**Economics Student Scholarship** 

**Economics** 

Spring 4-22-2020

#### Determinants of a Computer and Information Literacy Test Score: A Comparison across 19 Countries

Tishay Davis Providence College

Follow this and additional works at: https://digitalcommons.providence.edu/economics\_students

Part of the Economics Commons

Davis, Tishay, "Determinants of a Computer and Information Literacy Test Score: A Comparison across 19 Countries" (2020). *Economics Student Scholarship*. 4. https://digitalcommons.providence.edu/economics\_students/4

This Presentation is brought to you for free and open access by the Economics at DigitalCommons@Providence. It has been accepted for inclusion in Economics Student Scholarship by an authorized administrator of DigitalCommons@Providence. For more information, please contact dps@providence.edu.



Determinants of A Computer and Information Literacy Test Score:

A Comparison across 19 Countries

By: Tishay Davis and Dr. Fang Dong

PROVIDENCE COLLEGE

**Department of Economics** 

# Introduction

- The International Computer and Information Literacy Study (ICILS) is the first international comparative study of student preparedness for life in the information age - the ability to use computers to investigate, create and communicate in order to participate effectively at home, at school, in the workplace and in the community.
- ICT Literacy is the ability to use digital technology, communication tools, and/or networks appropriately to solve information problems in order to function in an information society.
- Computer Information Literacy test is defined in the ICILS 2018 Assessment Framework as "an individual's ability to use computers to investigate, create, and communicate in order to participate effectively at home, at school, in the workplace, and in society" (Fraillon et al., 2018).

- Computer Literacy and Education
  - Major benefit
    - Improves teaching and learning methods
- The universal digital divide
- Objective: The objective of this paper was to examine 19 education systems with regard to the relevance of both student-level school-level factors for the use of ICT by teachers in teaching and learning as well as the effect of the latter on students' CIL, as measured in IEA ICILS 2013.

 $\odot$  Socioeconomic factors

Gender based factors

#### Literature Review

#### Socioeconomics as a factor:

- Scherer, R., Rohatgi, A., & Hatlevik, O. E. (2017). Students' profiles of ICT use: Identification, determinants, and relations to achievement in a computer and information literacy test.
  - Objective: to answer to what extent do students' background and motivational characteristics differentiate the latent profiles of ICT use?
  - "In ICILS 2013, students' socioeconomic status is indicated by the highest education of parent(s), parent(s) occupation, and home literacy (number of books at home) resources in the family. These three variables have been reported by students, and ISCO coding has been used for coding the occupation for comparisons between countries. In the questionnaire, students were required to identify their parents' level of education on predefined categories based on the ISCED definitions (UNESCO, 2006)"
  - Important variables: background characteristics (i.e., gender, immigration status) and motivational constructs (i.e., self-efficacy, interest, and enjoyment in ICT)

- Law, NWY, Yuen, JKL & Lee, Y. "E-Learning Pedagogy and School Leadership Practices to Improve Hong Kong Students' Computer and Information Literacy: Findings from ICILS 2013 and beyond"
  - Objective: "help families, educators and policy makers understand Hong Kong students' levels of Computer Information Literacy (CIL) achievement in comparison with their international peers, and what elearning pedagogy and e-leadership practices in schools will help to foster students' ability to make use of ICT tools productively for lifelong learning in the 21st century."
  - There were two questions in the student survey that collected personal background variables:
    - □gender of the student, and the highest level of education that the student expected himself/herself to reach.
    - □ There were four kinds of family background variables elicited by the survey: whether the student has recent immigrant status, language spoken at home with respect to the language used in the CIL assessment, socioeconomic status (SES) and the availability of ICT resources at home.

#### Gender as a factor:

- Hatlevik, O. E., Throndsen, I., Loi, M., & Gudmundsdottir, G. B. (2018). Students' ICT self-efficacy and computer and information literacy: Determinants and relationships. *Computers and Education*, 118
  - Objective: explores how self-efficacy can be contextualized with information and communication technology in 15 countries. How do students' personal characteristics and background contextual variables affect their ICT self-efficacy and CIL?
  - In the present study, students' personal factors are represented by their ICT experiences (number of years) and ICT uses (at home and in school), in addition to gender and autonomous learning.
- Kiss, G., & Gastelú, C. A. T. (2015b). Comparison of the ICT Literacy Level of the Mexican and Hungarian Students in the Higher Education. *Procedia - Social and Behavioral Sciences*,
  - <u>**Objective</u>:** find the communication barriers which teachers' candidates face when they utilize technology.</u>

- Lau, W. W. F. (2017). Effects of social media usage and social media multitasking on the academic performance of university students. *Computers in Human Behavior, 68,* 286–291.
  - **<u>Objective</u>**: examine how social media usage and social media multitasking influence the academic performance of university students.
  - A gender difference in academic performance was found in which female students generally attained a higher CGPA than that of male students.
  - "There are arguably various cognitive and noncognitive factors that explain academic gender differences" (Cooper, 2014)

### Methods

Data sources

IEA's ICILS 2013: examine Grade 8 students CIL computer-based testing information on teaching and learning with ICT 21 education systems Within each of the selected schools, a random sample of 20 students and 15 teachers was chosen.







| Tał | ble 2 Analysis sample in the selected 19 educ | ation systems |                     |                   |                                       |  |  |
|-----|-----------------------------------------------|---------------|---------------------|-------------------|---------------------------------------|--|--|
|     | Education System/Country                      | Abbreivation  | Student sample size | Number of schools | Average number of students per school |  |  |
| 1   | Australia                                     | AUS           | 4699                | 287               | 16.4                                  |  |  |
| 2   | Chile                                         | CHL           | 2924                | 174               | 16.8                                  |  |  |
| 3   | Newfoundland and Labrador, Canada             | CNL           | 1219                | 102               | 12                                    |  |  |
| 4   | Ontario, Canada                               | СОТ           | 2404                | 152               | 15.8                                  |  |  |
| 5   | Czech Republic                                | CZE           | 2947                | 170               | 17.3                                  |  |  |
| 6   | Germany                                       | DEU           | 1693                | 117               | 14.5                                  |  |  |
| 7   | Denmark                                       | DNK           | 1278                | 78                | 16.4                                  |  |  |
| 8   | Hong Kong, SAR                                | HKG           | 1376                | 103               | 13.4                                  |  |  |
| 9   | Croatia                                       | HRV           | 2710                | 170               | 15.9                                  |  |  |
| 10  | Korea, Republic of                            | KOR           | 2781                | 150               | 18.5                                  |  |  |
| 11  | Lithuania                                     | LTU           | 2471                | 161               | 15.3                                  |  |  |
| 12  | Netherlands                                   | NLD           | 1649                | 95                | 17.4                                  |  |  |
| 13  | Norway                                        | NOR           | 1929                | 116               | 16.6                                  |  |  |
| 14  | Poland                                        | POL           | 2691                | 156               | 17.3                                  |  |  |
| 15  | Russian Federation                            | RUS           | 3042                | 187               | 16.3                                  |  |  |
| 16  | Slovak Republic                               | SVK           | 2758                | 167               | 16.5                                  |  |  |
| 17  | Slovenia                                      | SVN           | 3420                | 213               | 16.1                                  |  |  |
| 18  | Thailand                                      | THA           | 3155                | 183               | 17.2                                  |  |  |
| 19  | Turkey                                        | TUR           | 2088                | 141               | 14.8                                  |  |  |

### • Variables

|               | Table | e 1 Descriptive Statistics |        |              |       |        |       |  |
|---------------|-------|----------------------------|--------|--------------|-------|--------|-------|--|
|               |       |                            | (1)    | (2)          | (3)   | (4)    | (5)   |  |
|               |       | VARIABLES                  | Ν      | mean         | sd    | min    | max   |  |
|               |       |                            |        |              |       |        |       |  |
|               | 1     | S_BASEFF                   | 54,451 | 50.20        | 9.932 | 9.470  | 58.86 |  |
|               | 2     | S ADVEFF                   | 54,464 | 49.81        | 10.14 | 21.38  | 71.74 |  |
|               | 3     | IS1G02                     | 54,852 | 1.507        | 0.500 | 1      | 2     |  |
| or variables  | 4     | IS1G03                     | 54,672 | 1.838        | 1.043 | 1      | 5     |  |
| er variables  | 5     | IS1G13A                    | 54,848 | 1.174        | 1.152 | 0      | 9     |  |
|               | 6     | IS1G13B                    | 54,848 | 2.276        | 2.115 | 0      | 9     |  |
|               | 7     | S_TSKLRN                   | 54,456 | 50.41        | 9.863 | 24.08  | 60.14 |  |
|               | 8     | S_USEAPP                   | 54,698 | ,698 50.10 9 |       | 22.82  | 95.64 |  |
|               | 9     | S_USELRN                   | 54,080 | 50.86        | 9.937 | 35.53  | 76.62 |  |
|               | 10    | S_USEREC                   | 54,519 | 49.90        | 9.941 | 20.88  | 80.21 |  |
| ccoroc        | 11    | S_USESTD                   | 54,508 | 50.56        | 9.833 | 23.92  | 83.46 |  |
| scores        | 12    | S_USECOM                   | 54,589 | 49.97        | 9.942 | 27.04  | 75.27 |  |
|               | 13    | S_INTRST                   | 54,437 | 49.85        | 10.04 | 10.40  | 68.79 |  |
|               | 14    | S_USEINF                   | 54,511 | 49.60        | 10.03 | 36.79  | 88.39 |  |
|               | 15    | S_NISB                     | 49,409 | 0.0328       | 1.021 | -3.750 | 3.070 |  |
| ſ             | 16    | T_USELRN                   | 51,331 | 50.21        | 4.786 | 35.59  | 77.52 |  |
|               | 17    | T_USEAPP                   | 51,331 | 50.19        | 4.667 | 34.95  | 69.47 |  |
|               | 18    | T_USETCH                   | 51,331 | 50.19        | 4.794 | 35.60  | 75.80 |  |
|               | 19    | T_EFF                      | 51,331 | 50.71        | 4.421 | 18.56  | 64.19 |  |
| l variables 🚽 | 20    | T_EMPH                     | 51,331 | 49.96        | 4.536 | 35.45  | 70.42 |  |
|               | 21    | T_VWPOS                    | 51,331 | 49.63        | 4.967 | 31.39  | 76.88 |  |
|               | 22    | T_VWNEG                    | 51,331 | 48.99        | 4.881 | 10.56  | 70.72 |  |
|               | 23    | T_RESRC                    | 51,331 | 50.04        | 6.273 | 24.95  | 77.03 |  |
| L             | 24    | T_COLICT                   | 51,331 | 48.64        | 5.712 | 19.88  | 75.62 |  |
|               | Y1    | PV1CIL                     | 55,129 | 508.7        | 96.23 | 7.060  | 805.4 |  |
|               | Y2    | PV2CIL                     | 55,129 | 508.7        | 96.02 | 21.32  | 777.4 |  |
|               | Y3    | PV3CIL                     | 55,129 | 508.5        | 95.85 | 4.270  | 796.3 |  |
|               | Y4    | PV4CIL                     | 55,129 | 508.7        | 95.88 | 21.63  | 802.6 |  |
|               | Y5    | PV5CIL                     | 55,129 | 508.7        | 96.11 | 9.760  | 785.8 |  |

ordinal integer variables

All others: Transformed scores

9 school-level variables

- Analysis Model
- Level-1 model (Student level):

• 
$$Y_{ij} = \beta_{0j} + \sum_{q=1}^{15} \beta_{qj} (X_q)_{ij} + e_{ij}, \qquad e_{ij} \sim N(0, \sigma^2)$$

• Level-2 model (School-level):

• 
$$\beta_{0j} = \gamma_{00} + \sum_{s=1}^{9} \gamma_{0s}(W_s) + u_{0j}, \qquad u_{0j} \sim N(0, \sigma^2)$$

• 
$$\beta_{1j} = \gamma_{10} \dots \beta_{qj} = \gamma_{q0}.$$

• "Within this analysis, weighting variables are included to account for the complex structure of the ICILS 2013 data: As teacher data is aggregated to the school level, providing information about the teaching staff in a participating school, and is defined as characteristic of the respective school, the weighting variable at the school level is conducted by combining the school base weight with the school nonparticipation adjustment for the teacher survey (WGTFAC1 × WGTADJ1T, Meinck and Cortes 2015). The full information maximum likelihood method (FIML) was likewise applied (e.g. Enders 2006). Thus, missing values were not imputed, while population parameters and standard errors were estimated based on the data available (e.g. Enders 2006). Additionally, a robust maximum likelihood estimator (MLR) was used to account for the complex data structure (Muthén 2004)." (Gerick, Eickelmann, and Bos, 2017).

#### Results

|           | (1)        |
|-----------|------------|
| VARIABLES | Australia  |
|           |            |
| S_BASEFF  | 1.999***   |
|           | (0.000)    |
| S_ADVEFF  | -0.570***  |
|           | (0.000)    |
| 2.151602  | -17.419*** |
|           | (0.000)    |
| 2.151603  | -21.657*** |
|           | (0.000)    |
| 3.I51G03  | -27.760*** |
|           | (0.000)    |
| 4.151603  | -54.173*** |
|           | (0.000)    |
| 5.IS1603  | -46.139*** |
|           | (0.000)    |
| IS1G13A   | -1.959**   |
|           | (0.021)    |
| IS1G138   | 0.870*     |
|           | (0.096)    |
| STSKLRN   | 0.399**    |
|           | (0.031)    |
| S_USEAPP  | -0.209     |
|           | (0.149)    |
| SUSELRN   | -0.034     |
|           | (0.880)    |
| SUSEREC   | -0.111     |
|           | (0.457)    |
| S_USESTD  | 0.107      |
|           | (0.432)    |
| S_USECOM  | 0.097      |
|           | (0.528)    |
| SINTRST   | 0.694***   |
|           | (0.000)    |
|           | -0.548     |
|           | (0.000)    |
| S_NISB    | 10.884***  |

With regard to student context variables, student's ICT selfefficacy basic skills increase the CIL score by 1.999 points whereas student's ICT self-efficacy advanced skills lower the CIL score by 0.570 point. The CIL literacy test score of boy students was 17.419 points lower than that of girl students. As student's expected education level drops from ISCED Level 5A or 6 (which is the base level) to ISCED Level 4 or 5B, ISCED Level 3, ISCED Level 2, and I do not expect to complete [ISCED Level 2], the CIL score drops by 21.657, 27.760, 54.173, and 46.139 points, respectively. Each additional more desktop computer at home lowers the CIL score by 1.959 points whereas each additional more portable computer at home increases the CIL score by 0.870 points. As the scale index for learning ICT tasks at school increases by 1 unit, the CIL score increases by 0.399 point. As the scale index for interest and enjoyment in using ICT increases by 1 unit, the CIL score increases by 0.694 points. As the scale index for use of ICT for exchanging information increases by 1 unit, the CIL score decreases by 0.548 points. Finally, as the national index of students' socioeconomic background increases by 1 unit, the CIL score increases by 10.884 points.

| T_USELRN         | 0.894               |
|------------------|---------------------|
|                  | (0.307)             |
| T_USEAPP         | -3.504**            |
|                  | (0.048)             |
| T_USETCH         | 3.862*              |
|                  | (0.064)             |
| T_EFF            | -0.577              |
|                  | (0.398)             |
| T_EMPH           | -1.897              |
|                  | (0.213)             |
| T_VWPOS          | 0.177               |
|                  | (0.848)             |
| T_VWNEG          | -1.198 <sup>*</sup> |
|                  | (0.080)             |
| T_RESRC          | -1.233***           |
|                  | (0.001)             |
| T_COUCT          | -0.114              |
|                  | (0.823)             |
| Constant         | 645.002***          |
|                  | (0.000)             |
|                  |                     |
| Observations     | 4,699               |
| Number of groups | 287                 |

With regard to teacher context variables at the school level, the use of specific ICT applications can lower the CIL test score by 3.504 points whereas the use of ICT for teaching at school increases the CIL score by 3.862 points. A more negative views on using ICT in teaching and learning can lower the CIL score by 1.198 points. A more pessimistic perspective on the lack of computer resources at school can lower the CIL score by 1.233 points.

|          | (1)       | (2)       | (3)                           | (4)        | (5)      | (6)       | (7)       | (8)       | (9)      | (10)      | (11)      | (12)        | (13)      | (14)     | (15)       | (16)      | (17)      | (18)      | (19)      |
|----------|-----------|-----------|-------------------------------|------------|----------|-----------|-----------|-----------|----------|-----------|-----------|-------------|-----------|----------|------------|-----------|-----------|-----------|-----------|
|          |           |           | Newfoundland<br>and Labrador, | , Ontario, | Czech    |           |           | Hong Kong | 5,       | Korea,    |           |             |           |          | Russian    | Slovak    |           |           |           |
|          | Australia | Chile     | Canada                        | Canada     | Republic | Germany   | Denmark   | SAR       | Croatia  | Republic  | Lithuania | Netherlands | Norway    | Poland   | Federation | Republic  | Slovenia  | Thailand  | Turkey    |
|          | AUS       | CHL       | CNL                           | СОТ        | CZE      | DEU       | DNK       | HKG       | HRV      | KOR       | LTU       | NLD         | NOR       | POL      | RUS        | SVK       | SVN       | THA       | TUR       |
| S_BASEFF | 0.231***  | 0.257***  | 0.263***                      | 0.280***   | 0.181*** | 0.126***  | 0.230***  | 0.211***  | 0.211*** | 0.391***  | 0.281***  | 0.149***    | 0.271***  | 0.228*** | 0.250***   | 0.238***  | 0.265***  | 0.178***  | 0.195***  |
|          | (11.03)   | (12.57)   | (7.88)                        | (8.32)     | (8.94)   | (3.83)    | (6.44)    | (6.27)    | (9.78)   | (15.60)   | (12.82)   | (6.97)      | (9.82)    | (9.90)   | (12.12)    | (11.84)   | (11.68)   | (7.19)    | (9.62)    |
| S_ADVEFF | -0.074*** | -0.087*** | -0.199***                     | -0.052     | -0.016   | -0.017    | -0.165*** | -0.080*   | -0.018   | -0.134*** | -0.098*** | -0.072**    | -0.139*** | -0.066** | -0.096***  | -0.086*** | -0.160*** | -0.151*** | -0.093*** |
|          | (-3.85)   | (-4.30)   | (-4.35)                       | (-1.83)    | (-0.74)  | (-0.57)   | (-4.97)   | (-2.56)   | (-0.84)  | (-5.75)   | (-3.93)   | (-2.67)     | (-3.91)   | (-2.60)  | (-4.44)    | (-4.17)   | (-6.19)   | (-7.20)   | (-3.82)   |
| 1.IS1G02 | 0.000     | 0.000     | 0.000                         | 0.000      | 0.000    | 0.000     | 0.000     | 0.000     | 0.000    | 0.000     | 0.000     | 0.000       | 0.000     | 0.000    | 0.000      | 0.000     | 0.000     | 0.000     | 0.000     |
|          | (.)       | (.)       | (.)                           | (.)        | (.)      | (.)       | (.)       | (.)       | (.)      | (.)       | (.)       | (.)         | (.)       | (.)      | (.)        | (.)       | (.)       | (.)       | (.)       |
| 2.IS1G02 | -0.121*** | -0.037    | -0.189***                     | -0.155***  | -0.035   | -0.107*** | -0.046    | -0.017    | -0.001   | -0.110*** | 0.001     | -0.131***   | -0.126*** | -0.022   | 0.011      | 0.005     | -0.108*** | -0.028    | 0.013     |
|          | (-8.01)   | (-1.84)   | (-5.78)                       | (-6.47)    | (-1.72)  | (-4.63)   | (-1.89)   | (-0.67)   | (-0.05)  | (-5.44)   | (0.05)    | (-5.44)     | (-5.65)   | (-1.04)  | (0.68)     | (0.25)    | (-5.82)   | (-1.47)   | (0.88)    |

Table 4 standardized beta coefficients

#### Table 5 Rank on the absolute value of Beta coefficients

| Rank VAR    | AVE   | Absolute | MIN   | Country                           | MAX   | Country                                             |
|-------------|-------|----------|-------|-----------------------------------|-------|-----------------------------------------------------|
| 1 S_BASEFF  | 0.23  | 0.23     | 0.13  | Germany                           | 0.39  | Korea, Republic                                     |
| 2 3.IS1G03  | -0.15 | 0.15     | -0.33 | Croatia                           | -0.03 | Newfoundland and Labrador, Cananad                  |
| 3 4.IS1G03  | -0.11 | 0.11     | -0.23 | Netherlands                       | -0.03 | Newfoundland and Labrador, Cananad                  |
| 4 S_NISB    | 0.11  | 0.11     | -0.04 | Hong Kong, SAR                    | 0.18  | Denmark                                             |
| 5 S_ADVEFF  | -0.09 | 0.09     | -0.20 | Newfoundland and Labrador, Canada | -0.02 | Czech Republic, Germany, Croatia                    |
| 6 T_USELRN  | 0.09  | 0.09     | -0.20 | Lithuania                         | 0.59  | Germany                                             |
| 7 2.IS1G03  | -0.08 | 0.08     | -0.16 | Lithuania                         | -0.01 | Slovak Republic                                     |
| 8 T_RESRC   | -0.07 | 0.07     | -0.18 | Turkey                            | 0.02  | Ontario, Canada                                     |
| 9 2.IS1G02  | -0.06 | 0.06     | -0.19 | Newfoundland and Labrador, Canada | 0.01  | Russian Federation, Slovak Republic, Turkey         |
| 10 T_EMPH   | -0.06 | 0.06     | -0.40 | Turkey                            | 0.41  | Thailand                                            |
| 11 S_USEINF | -0.06 | 0.06     | -0.15 | Turkey                            | 0.01  | Newfoundland and Labrador, Cananad; Hong Kong, SAR; |
| 12 5.IS1G03 | -0.05 | 0.05     | -0.10 | Netherlands                       | 0.00  | Hong Kong, SAR                                      |
| 13 T_VWPOS  | -0.05 | 0.05     | -0.28 | Netherlands                       | 0.03  | Thailand                                            |
| 14 S_USESTD | -0.04 | 0.04     | -0.16 | Newfoundland and Labrador, Canada | 0.01  | Australia                                           |
| 15 S_INTRST | 0.04  | 0.04     | -0.03 | Czech Republic                    | 0.11  | Netherlands                                         |
| 16 S_USECOM | 0.03  | 0.03     | -0.06 | Denmark                           | 0.15  | Turkey                                              |
| 17 T_USETCH | -0.03 | 0.03     | -0.29 | Netherlands                       | 0.15  | Australia                                           |
| 18 IS1G13B  | 0.03  | 0.03     | -0.02 | Germany                           | 0.10  | Thailand                                            |
| 19 S_USEREC | 0.03  | 0.03     | -0.02 | Australia                         | 0.10  | Newfoundland and Labrador, Canada; Poland           |
| 20 S_USEAPP | 0.02  | 0.02     | -0.04 | Denmark                           | 0.10  | Korea, Republic                                     |
| 21 S_USELRN | -0.02 | 0.02     | -0.09 | Chile                             | 0.10  | Denmark                                             |
| 22 IS1G13A  | -0.02 | 0.02     | -0.08 | Netherlands                       | 0.06  | Thailand                                            |
| 23 S_TSKLRN | 0.01  | 0.01     | -0.06 | Germany                           | 0.07  | Ontario, Canada                                     |
| 24 T_COLICT | 0.01  | 0.01     | -0.13 | Lithuania                         | 0.17  | Russian Federation                                  |
| 25 T_VWNEG  | -0.01 | 0.01     | -0.19 | Netherlands                       | 0.35  | Germany                                             |
| 26 T_USEAPP | 0.01  | 0.01     | -0.49 | Germany                           | 0.30  | Russian Federation                                  |
| 27 T_EFF    | 0.00  | 0.00     | -0.14 | Netherlands                       | 0.10  | Chile                                               |

# Implications and Conclusions

- Students' ICT self-efficacy in basic skills has a very large and significant positive effect on students' CIL test scores.
- National Index of Students Socioeconomic Background also has very large and significant positive impact on students' CIL test scores except for Hong Kong, SAR, China, where it has a slightly significant negative impact on students' CIL test scores, and Thailand, where it has an insignificant coefficient, while Netherlands is excluded due to the lack of data on this variable.
- Another important finding is that in most countries there is a gender gap in which male students usually have a statistically and significantly lower CIL test scores than female students.

- Our results agree with many other researches using ICILS 2013. Students' socioeconomic backgrounds are important for understanding variations in students' CIL, and in some countries, their ICT self-efficacy. This means that family background may explain digital inequity and the digital divide. To prevent and dismiss the digital divide, schools should take action to help students develop ICT literacy.
- Girls obtain higher CIL scores than boys, and in many countries, they
  report higher ICT self-efficacy. This result may indicate a change in
  previous gender stereotypes. Despite profound results, the present
  study does not provide any information about why these changes
  occurred. Therefore, it would be interesting to scrutinize the gender
  differences in CIL to gain more knowledge about what implications
  gender may have for instruction in schools.

 A positive relationship between ICT self-efficacy in basic skills and CIL was found, however there was also a negative relationship between ICT self-efficacy in advanced skills and CIL, though this varies from low in some countries to moderate in others. We do not know if increased ICT self-efficacy will increase CIL in general, and it is still uncertain if more emphasis in schools on the development of students' ICT will strengthen and increase their CIL. This requires longitudinal studies scrutinizing the relationship between ICT self-efficacy and CIL.

#### Future improvement

 This study opens several opportunities for future research based on the limitations and results found through our analyses. The model is partly supported in 19 countries. However, in the future we could also explore the insight into the national school system in these countries.