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Husserl, Jacob Klein, and Symbolic 
Nature 

Joseph Cosgrove 

Husserl's philosophy of science in The Crisis of European Sciences focuses 
on the reactivation of the sedimented meanings by which science, as a positive 
historical phenomenon, is constituted.1 Although the historical emphasis of 
The Crisis is arguably implicit in the "genetic phenomenology" of earlier 
works such as Formal and Transcendental Logic, the "ideal sense-histories" 
sought after via the earlier genetic method must now be grounded in actual 
historical research. For, in the absence of an understanding of its historical 
origins, maintains Husserl, "science as given in its present-day form ... is mute 
as a development of meaning."2 Nevertheless, this reconceived historical phe-
nomenology remains distinct from history in the usual sense, or even 
philosophy of history, in that it still situates itself within the 
phe-nomenological reduction, where the aim is the reactivation of an ideal 
sense-history as opposed to historical knowledge per se. 

For Husserl, modern, or "Galilean," science is characterized by a 
mathematical idealization of nature, the "surreptitious substitution of idealized 
nature for prescientifically intuited nature."3 The phenomeno-logical 
desedimentation of this science requires the excavation of two specific strata in 
its genetic constitution: the geometrical idealization of nature which Husserl 
associates most closely with Galileo himself; and, deposited over the latter, as 
it were, the symbolic idealization of nature via algebraic formalization. 

In this essay, I shall direct my attention to the second layer of sedi-
mentation identified by Husserl, that of symbolic idealization via algebraic 
formalization.4 This would indeed seem to be in line with Husserl's basic 
intention, which has to do not so much with the fact that so-called "Galilean 
science" uses mathematics as with how it uses mathematics; namely, as 
mathesis universalis in the form of a "self-enclosed, coherent systematic 
theory . . . proceeding from axiomatic concepts and propositions," which 
anticipates a universal science, the "one all-encompassing science, the science 
of the totality of what is."5 
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Husserl describes this substitution of mathematical idealities for the real world in terms 
of a kind of "reification of method": 

Mathematics and mathematical science, as a garb of ideas, or the garb of 
symbols of the symbolic mathematical theories, encompasses everything 
which, for scientists and the educated generally, represents the life-world, 
dresses it up as "objectively actual and true" nature. It is through the garb 
of ideas that we take for true being what is actually a method.6 

Discovering the way modern mathematical science has come to take its method of 
representation for the true being of nature is thus the essential task of the historical 
phenomenology projected and roughly sketched in The Crisis. 

As Burt Hopkins points out, Jacob Klein carried out, in significant measure, the 
historical research called for by Husserl's Crisis but not carried out by Husserl 
himself.7 Klein, in his Greek Mathematical Thought and the Origin of Algebra, 
uncovers a transformation in the intelligibility of number from the Greek conception, 
governed by a natural intelligibility, to the modern conception governed by a symbolic 
intelligibility. He further suggests that the new science of the seventeenth century 
identifies, in a way necessarily hidden from itself, the symbolic mathematical 
representation of nature with nature itself. That is to say, annexed to the modern 
symbolic conception of number is a "symbolic nature" serving as the proximate object 
of modern mathematical physics. Indeed, Klein stresses, the algebraic form and 
conceptual structure of modern physics are inseparable: 

The symbolic language of algebra, that is, the language proper to 
mathematical physics, is not a purely technical or instrumental matter. It is 
a common mistake to believe that we can translate the theorems of 
mathematical physics into ordinary language, as if the mathematical 
apparatus used by the physicists were only a tool employed in expressing 
their theorems more easily.8 

According to Klein, the point of departure for this algebraic physics, decisive for all 
subsequent science, is the "symbolic space" of Descartes' analytical geometry. Its 
ultimate legacy is the "symbolic unreality" of our modern civilization.9 

In a thought-provoking essay on Klein and Husserl, Hopkins concludes that the 
symbolic character of modern mathematical science renders impossible in principle the 
fulfillment of Husserl's demand for the phenomenological reactivation or "cashing in" 
of its original intuitive evidence in the sensuous life-world. This is because the 
intentionality proper to that science terminates not in sensuous nature, but rather in 
symbolic mathematical entities themselves: "The consequence of this [formalization of 
meaning] is that the possibility of—however indirect— 
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an intuitive 'cashing in' of the formalized meaning formations of the mathesis 
universalis of modernity is in principle precluded."10 If modern mathematical science 
cannot be "cashed in" intuitively in the sensuous life-world then its claim to 
knowledge of that world would seem to be radically called into question. 

While there has been, by Hopkins and others, some valuable work done on the 
relationship between Klein's work on the history of mathematics and Husserl's 
philosophy of science, I believe that the notion of "symbolic nature" has yet to be truly 
brought into focus. This is, at least in part, because Klein did not himself do the 
corresponding work in the history of science, specifically on the algebraization of 
physics, that he did in the history of mathematics. Instead, we have some suggestive 
but nonetheless historically unsubstantiated remarks about Cartesian "symbolic space" 
serving as the "absolute space" of Newton's physics. My aim in this essay, accordingly, 
is to bring into focus the notion of "symbolic nature," which is barely suggested by 
Klein, with a view toward rendering more transparent the question of its possible 
phe-nomenological desedimentation. The architects of the new mathematical physics in 
the seventeenth and into the eighteenth centuries were in fact quite scrupulous about 
keeping distinct the symbolic quantities of algebra and the physical quantities of 
natural science. Indeed, symbolic mathematics in the form of algebraic equations does 
not become the dominant language of mathematical physics until about a century after 
Newton, and still it is not easy to fix the point at which it becomes an autonomous 
meaning formation as opposed to a mere shorthand for intuitively grounded knowledge 
of physical quantities based on the traditional mathematics of proportion. Klein's thesis, 
and with it the claim that modern mathematical physics ushers us into a world of 
"symbolic unreality," thus merits our most careful and critical consideration. 

1. Symbolic Number 

The central thesis of Klein's desedimentation of the history of modern mathematics in 
Greek Mathematical Thought can be summarized as follows: For Greek mathematics, a 
number is always a definite collection of countable units of a specific kind. In modern 
mathematics since Vièta, by contrast, a number is essentially a symbolic entity defined 
by its general relationships to other numbers in a symbolic calculus.11 For modern 
mathematics (to slightly modify a quip attributed to Quine), to be a number is to be the 
possible value of an algebraic variable. In Vièta's reinterpretation of Diophantus' 
Arithmetica, Klein demonstrates, algebraic symbols undergo a change of teleology. 
While Diophantine algebraic symbols represent unknown quantities of count- 



GRADUATE FACULTY PHILOSOPHY JOURNAL 

able units, Vièta's symbols represent the general concept of being a number. And this 
holds not just for algebraic variables themselves, but also for less general but still 
symbolic entities, such as "2," which directly refers no longer to two countable units 
but to "two-ness" in general or "the number two" as an object in its own right. 
Consequently, Klein points out, it is less than illuminating to merely characterize the 
modern symbolic conception of number as "abstract" in comparison to the "concrete" 
Greek conception.12 Greek arithmetic, too, is a science of abstract number, at least if by 
"abstract" we mean a science capable of separating the general concept of number from 
particular kinds of countable units such as "three apples" or "three oranges." 
Nevertheless, Greek arithmetic never treats such general concepts as being numbers 
themselves. 

In the scholastic terminology employed by Klein, Vièta takes a "second intention" 
(intentio secunda), or concept referring to another concept, and interprets it as a "first 
intention" {intentio prima), or concept applying directly to individual objects.13 While 
this does not in itself institute the modern symbolic reification of number per se, as 
long as one keeps the original concept of number distinct from the symbolic, in the 
aftermath of Vièta's innovation—in Stevin, Descartes, and Wallis in particular—the 
original conception of number is implicitly replaced by the symbolic.14 The 
implications of this "forgetfulness" for a mathematical science of nature are readily 
apparent. 

The modern conception of number renders possible "numbers" impossible per se 
in Greek mathematics, such as "zero," "one," fractional numbers, negative numbers, 
irrational numbers, square-roots of negative numbers, and so forth. Of crucial 
importance, especially for subsequent mathematical physics, are fractional numbers, 
since in algebra and algebraic physics, ratios will be reinterpreted as fractions, and 
proportions as equality of fractional numbers. Moreover, the modern conception of 
number renders possible certain operations that in Greek mathematics would be 
incoherent. For example, Greek mathematics prohibits the multiplication of numbers 
by one another except in such case where the multiplication is interpreted as taking a 
certain number of units of length "by" another number of units of length to yield first 
an area ("two stades by two stades equals four stades square") and then a volume ("four 
stades square by two stades equals eight stades cube"). Similarly, in Greek 
mathematics one could not add together a square number and a cubic number, an 
operation we take for granted in modern algebra (22+23=12). This latter operation is 
rendered possible by the dimensionlessness and consequent homogeneity of symbolic 
number, which has been dissociated from direct reference to unit kinds.15 
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Clearly, from a phenomenological point of view the symbolic conception of 
number raises questions of intuitive fulfillment. In Husserlian terms, symbolic number 
is an ideal object which, as such, must find its fulfillment in "eidetic intuition." Eidetic 
intuitions, however, as founded acts of meaning fulfillment, are in principle genetically 
traceable to lower-level meaning intentions and their intuitive fulfillment, and ulti-
mately to immediate experience of the life-world.16 If the evidentiary genesis of such 
meaning formations cannot be reactivated, they "explode," so to speak, into 
incoherence. The problem raised by symbolic number, then, is whether there exists for 
it, to employ the terminology of Husserl's Logical Investigations, a corresponding 
"fulfilling sense."17 Klein's analysis would seem to suggest not, for a fulfilling sense 
entails the possibility of the object being intuited as intended, and a second intention 
treated as a first intention cannot in principle be intuited as intended. Indeed, a second 
intention interpreted as a first intention would seem instead to be an example of what 
Husserl in Logical Investigations terms an "impossible meaning."18 

However, even if no direct life-world fulfillment can be obtained for such 
symbolic entities, nothing precludes an indirect fulfillment if we reactivate the 
distinction between the original conception of number and the symbolic. For instance, 
I resolve to consume 14 more pieces of fruit per week and wish to determine how 
much I must increase my fruit intake per day. I set up the algebraic equation 7x=14. 
Interpreted purely numerically (without reference to unit kinds), the expression finds 
fulfillment in eidetic intuition. To redeem the eidetic intuition in the life-world we 
restore the original units, in this case days, weeks, and fruit. While the product of a 
number of days and a number of fruits is intuitively incoherent, it can be rendered 
intuitive indirectly if we treat the formula 7x=14 as an abbreviated proportion or ratio 
equation: "As seven days is to one day, fourteen pieces of fruit is to the number of 
pieces of fruit I should consume per day." Understood this way, symbolic meaning 
formations such as 7X=14 in no way represent an insurmountable obstacle to Husserl's 
project of reactivating the sense-genesis of formalized meanings in the life-world. 

Clearly, the matter is complicated, however, by the fact that symbolic number is 
not directly abstracted from countable units, but rela-tionally constituted as the 
possible value of an algebraic variable. Thus, in symbolic mathematics, "-4" qualifies 
as a number just as much as "4," since we have at our disposal an algebraic calculus 
defining operations on "-4" (and on negative numbers in general, e.g., negative times 
positive equals negative, negative times negative equals positive, and so forth). But 
what fulfilling sense, traceable to the life-world, could there be for negative numbers? 
One possibility often suggested is to 
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view negative numbers in terms of a departure from some neutral reference point, for 
instance, left instead of right on a number line, or owing money instead of having it. It 
is intuitively evident, for instance, that if I owe three dollars each to three people, I can 
multiply the "negative three" dollars ("negative" meaning it is a debt) by three, yielding 
a "negative nine" dollars. Here, the rule, "positive times negative equals negative," is 
intuitively evident. We can, perhaps, even cash in the algebraic rule, "negative times 
negative equals positive," by conceiving it as the repeated subtraction of a negative 
number.19 Similarly, while the so-called "irrationals" cannot be cashed in as numbers, 
they can be redeemed as ratios of extensive magnitudes (ratios of line lengths, for 
instance).20 On the other hand, such symbolic entities as square-roots of negative 
numbers ("imaginary numbers") appear representative of the type indicated by 
Hopkins, a categorial meaning formation that in principle cannot be reactivated, even 
indirectly, in terms of life-world experience. Nevertheless, theorems involving such 
numbers can be rigorously proven in algebra, evidently based on an eidetic intuition of 
the structural properties of the algebraic calculus itself. Symbolic mathematics, it 
seems, gives back more than we put into it in terms of life-world intuitions. 

Klein notes that Greek mathematics distinguished between "logistic," the art of 
calculating, and arithmetic, the science of numbers. The latter dealt with such 
categories of number as even and odd, and so forth.21 In logistic, by contrast to 
arithmetic, such things as fractional units could be used to facilitate calculation, even 
though they were not understood to be numbers. Diophantus' Arithmetiea springs from 
the soil of logistic and may be regarded as a kind of theoretical science of calculating.22 
Vièta's symbolic reinterpretation of Diophantine logistic is thus understood (by himself 
and others) in the sixteenth and seventeenth centuries as a calculational "art" in the 
sense of "logistic." But it is understood at the same time as the art of finding the truth, 
which is to say, a universal science (mathesis universalis). In this way, the symbolic 
method of representing the truth comes to be identified with science itself, and the 
proximate object of symbolic representation (symbolic meaning formations 
themselves) comes to be identified with the object of science.23 Thus, the symbolic 
mathematics desedimented by Klein is emblematic of the "reification of method" 
reprehended by Husserl in The Crisis ("we take for true being what is actually a 
method"). But, if symbolic mathematics provides the decisive impetus for a general 
reification of method, it may be the case nonetheless that a nascent reification of 
method itself renders possible the emergence of symbolic mathematics. In this way, the 
otherwise paradoxical historical fact that modern "mathematical physics" does not 
actually become "mathematical," in the 
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sense we use the term today, until about a century after it has arrived on the scene with 
Newton's Principia could perhaps be made intelligible. 

2. Symbolic Nature 

Whatever implications the possible failure of fulfilling sense has for "pure 
mathematics" and its eidetic intuitions, such a failure can only appear problematic for a 
symbolic mathematical science of nature whose concepts, one should think, must be at 
least indirectly redeemable in the sensuous life-world if they are to be in any genuine 
sense "about" the natural world. As noted above, for Husserl, any authentic eidetic 
intuition must enjoy an evidentiary genesis traceable to immediate experience in the 
life-world. However, such evidentiary geneses assume differing forms for differing 
"regional ontologies." Pure mathematics deals with ideal meaning intentions (symbolic 
formulae) whose referents are themselves ideal objects. Consequently, intuitive 
fulfillment for such meaning intentions does not take the form of sensuous intuitions in 
the life-world, even though on Husserl's view their evidentiary genesis is, of necessity, 
traceable to life-world intuitions. Such ideal objects appear "in person," as it were, to 
eidetic intuition itself. 

However, while the objects of pure mathematics are ideal, the objects of 
mathematical physics are real. Thus, for the symbolic meaning formations of 
mathematical physics to have a fulfilling sense means, on Husserl's assumption, that 
they enjoy at least indirectly an intuitive fulfillment in the sensuous life-world. 
Einstein's E=mc2, for instance—a symbolic meaning formation whose object is not 
directly intuitable in the sensuous life-world—must on Husserl's account either have 
an indirect and sensuously intuitable non-symbolic referent, as in our earlier example 
of the fruit, or explode into incoherence as an impossible meaning, something on the 
level of "three apples times four oranges equals twelve apple-oranges." 

While the Husserl of The Crisis is clearly troubled by the obscurity of the 
connection between symbolic mathematical physics and the sensuous life-world, he 
does not question the authenticity of mathematical physics itself as a meaning 
formation.24 That is to say, Husserl never suggests that, for instance, Einstein's theory 
of relativity might be an "impossible meaning" which would explode into incoherence 
were we to desediment its ideal sense-history. His concern is, rather, how meaning 
accrues to such symbolic formations via their genesis in the intuitively given 
life-world, not whether it so accrues: 
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Einstein's revolutionary innovations concern the formulae through which 
the idealized and naïvely objectified physis is dealt with. But how 
formulae in general, how mathematical objectification in general, receive 
meaning on the foundation of life and the intuitively given surrounding 
world—of this we learn nothing; and thus Einstein does not reform the 
space and time in which our vital life runs its course.25 

Thus, as Hopkins observes, Husserl does not argue for this genesis of symbolic 
mathematical physics in the life-world, but simply sets forth the disclosure of that 
genesis as a phenomenological task.26 Because life-world intuition is the means by 
which the world discloses itself originally, any representation of the world that has 
become "unteth-ered," as it were, from life-world intuition is thereby nullified. This 
need not preclude inferred theoretical entities, such as gravitational fields and such, just 
so long as the sense genesis of such entities is rendered intuitively transparent at every 
step. 

A second desedimentation by Klein, however—this one focusing on Descartes' 
interpretation of the geometrical figures of his unpublished Regulae (1619-1628) and 
then Geometry (1637)—would appear to call that phenomenological task into 
question.27 Descartes' analytical geometry, as Klein brilliantly demonstrates, sets up a 
"symbolic space" quite distinct from the real space of traditional geometry. Descartes' 
figures, principally line lengths but also geometrical "figures" in the more usual sense, 
are not figures in space per se, but rather symbolic representations of "magnitudes in 
general."28 Indeed, it is demonstrable that these "magnitudes in general" are symbolic 
numbers in Klein's sense. Descartes launches his Geometry, for example, with the 
assertion that "[a]ny problem in geometry can easily be reduced to such terms that a 
knowledge of the lengths of certain straight lines is sufficient for its construction."29 He 
proceeds by setting forth the method for multiplying two lines together via a 
geometrical construction exhibiting proportions between line segments. Further noting 
that we can economically represent the lengths of the line segments with letters, 
Descartes illustrates the latter procedure with the expression a2 or "a multiplied by 
itself; by "square" and other such expressions, he remarks, he really means "simple 
lines, which, however, I name squares, cubes, etc., so that I may make use of the terms 
employed in algebra."30 Since multiplication of lines to yield lines is an intuitively 
incoherent operation, we can conclude that Descartes is multiplying symbolic (and 
therefore dimension-less) numbers, themselves symbolized now by letters, now by 
lines, and then symbolizing the product itself with a line or a letter. The figures of 
Descartes' analytic geometry, then, are intuitively perspicacious symbolic 
representations of general relationships between magnitudes— 
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relationships which can be more economically, albeit less perspica-ciously, symbolized 
by letters in an algebraic equation. For instance, when we "graph" the equation for a 
circle (x2+y2=r2), the resulting figure is itself circular, but it is not intended as a circle 
per se, but rather as a symbolic representation of the general quantitative relationships 
expressed by the equation for a circle. These quantitative relationships are not specific 
to geometrical circles. Thus, the Cartesian figure (fig. 1) is only indirectly a 
representation of a circle in space, whereas a Euclidean figure (fig. 2) drawn with a 
compass, for instance, is a direct representation: 

 

 

Figure 1 Figure 2 

The point can perhaps be rendered more clearly by an example where the symbolic 
figure does not resemble that which it represents. We can represent, for instance, the 
relationship between time and distance in uniformly accelerated, straight-line motion 
with the equation s=at2/2, which graphs as a parabola (x-axis represents distance, 
y-axis represents time): 

 

Figure 3 
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This parabola does not resemble the straight-line motion it represents (indeed, the 
portion beneath the x-axis does not represent anything in the motion at all), and bears 
exactly the same relationship to that motion as does a Cartesian symbolic circle to the 
circle in space represented by it. 

However, Klein further suggests that Descartes has implicitly identified the 
"symbolic space" of his analytical geometry with real space, such that Cartesian 
symbolic space becomes the "absolute space" of Newtonian mechanics.31 As John 
Schuster notes, this interpretation seems to overreach the text, in which the symbolic 
employment of real extension does not in itself constitute an identification of "symbolic 
space" and real space.32 To be sure, Descartes does not seem to distinguish between his 
symbolic figures and the properly geometrical figures of traditional constructive 
geometry. Descartes' symbolic figures, after all, happen to be instances of the very 
geometrical figures they represent symbolically. That is, his symbolic circle is in fact 
circular, his symbolic ellipse is in fact elliptical, and so forth. But even if Descartes 
does in fact identify the symbolic space of his geometry with physical space—and this 
seems to be a conjecture on Klein's part— Klein adduces no specific evidence from 
"Newtonian science" itself to back up the claim that the latter is somehow essentially 
dependent upon Cartesian geometry.33 Such a claim, however suggestive, would have 
to be cashed in historically itself. 

3. Mathematical Physics and the Life-World 

It will be helpful for elaborating the concept of "symbolic nature" and its relationship 
to life-world intuition to briefly consider some key features of the historical process by 
which algebra was adopted as the language of modern physics. This was a slow 
development and met with significant resistance. Some of the reasons for the delay are 
clear, having to do with the felt need among physicists to keep symbolic and physical 
quantities conceptually distinct. One would naturally expect Descartes, for instance, to 
employ his newly developed "analytical geometry" in mechanics, which latter is after 
all the defining telos of Descartes' mathesis universalis. But, in fact, we find no 
algebraic equations at all in Descartes' Principles of Philosophy, the definitive 
statement of his mature physics. While the generally non-quantitative character of 
Descartes' physics has often been remarked and various reasons for it given, one might 
nevertheless ask why Descartes does not at least employ algebra in the formulation of 
his clearly quantitative laws of nature and rules of impact. Descartes describes his 
groundbreaking law 
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of conservation of quantity of motion, for instance, in the following terms: 
In the beginning . . . [God] created matter, along with its motion and rest; 
and now, merely by his regular concurrence, he preserves the same 
amount of motion and rest in the material universe as he put there in the 
beginning. . . . Thus if one part of matter moves twice as fast as another 
which is twice as large, we must consider that there is the same quantity 
of motion in each part; and if one part slows down, we must suppose that 
some other part of equal size speeds up by the same amount.34 

Here, Descartes expresses "quantity of motion" as a traditional compound ratio—a 
body's quantity of motion is jointly proportional to its speed and its size or volume. 
Why does he not simply write, as we would, Q=VS (Q=quantity of motion, V=volume, 
S=speed), and then express the conservation law for two colliding bodies as 
V1S1

0+V2S2
0= V1S1

f+V2S2
f (the subscripts designate initial and final velocity before and 

after the collision; and the superscripts distinguish the two bodies)? Perhaps the 
quantitative relationships are immediately evident in this case, obviating the need for 
symbolic technique. Beyond that, however, another and more serious impediment 
presents itself, namely, that speed and volume, as non-homogeneous quantities, cannot 
be multiplied together.35 Thus, Descartes employs the language of proportion, because, 
along with everyone else in the seventeenth century, he understandably regards the 
language of proportion as the language of mathematical physics. 

John Wallis in 1685 still prohibits algebraic ratios between non-homogeneous 
magnitudes in physics, although he later admits them as abbreviated ratio equations 
(proportions expressed as an equality of fractional ratios), not as "algebraic equations" 
in the sense we understand the term today.36 Since length and weight are heterogeneous 
quantities, Wallis notes, they have no ratio. Similarly, velocity is not expressed 
algebraically as a ratio of distance and time—something we take for granted 
today—until Varignon around 1699.37 It is not until the third edition of the Principia 
(1726) that Newton, somewhat reluctantly, expresses quantity of motion (a vector 
quantity for him in the sense of our "momentum" or mv) as the product, "if I may so 
say," of mass and velocity.38 Still he refrains from the algebraic expression mv. 
Moreover, even when such algebraic expressions come into common usage in the 
eighteenth century, they are understood in general as abbreviated compound ratios, not 
absolute quantities in their own right. Finally, when Laplace, for instance, in his Traité 
de mécanique céleste (1798), at last argues for an absolute interpretation of the equa-
tions of mathematical physics, he feels the need to stress that such 
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equations express homogenous ratios between "abstract" or dimension-less (read, 
Klein's "symbolic") numbers rather than direct ratios between inhomogeneous 
quantities: 

Time and space, being heterogeneous quantities, cannot be directly 
compared with each other; therefore an interval of time, such as a second 
is taken for the unit of time and a given space, such as a metre, is taken 
for the unit of space; then space and time are expressed by abstract 
numbers, denoting how many measures of these particular species each of 
them contains, and they may then be compared with each other. In this 
manner the velocity is expressed by the ratio of two abstract numbers, and 
its unit is the velocity of a body which describes one metre in a second.39 

Laplace here interprets the equation v=d/t (or, in differential calculus, v=ds/dt) as a 
pure ratio of symbolic numbers expressed as a fraction, which is then "plugged back 
into" the units of velocity. The passage clearly implies that the equation can be cashed 
in intuitively by the following translation: "The ratio of velocity to its unit is 
proportional to the compound ratio of the distance traversed to its unit and the unit of 
time to the time elapsed." If there is the substitution of a symbolic ideality (ds/dt) for a 
physical reality (velocity) here, it is hardly a surreptitious one! 

A number of points may be noted in these examples. First, a significant resistance, 
stemming from the desire to keep symbolic and physical quantities distinct, had to be 
overcome in the introduction of an algebraic language into physics. Second, even when 
they were finally accepted into physics, for a century or more, algebraic equations 
were interpreted as abbreviated proportions rather than as absolute equalities in the 
sense we understand the equations of physics today. Third, until at least the beginning 
of the nineteenth century, algebraic equations, even when they were interpreted as 
absolute equalities rather than as abbreviated proportions, were explicitly understood 
as translatable back into the language of proportion and redeemable in intuitive 
experience. Clearly, the mere usage of algebra in mathematical physics is not 
tantamount to a symbolic reification of nature, even when it yields symbolic entities, 
such as mv or v/t, containing sedimented operations lacking for any life-world fulfilling 
sense. It would be in general prohibitively cumbersome to intuitively cash in the 
algebraic formulae of modern physics. I do not know the extent to which it has been 
tried. Certainly, the training of scientists neither includes such "cashing in" as part of 
the curriculum nor encourages it, and this no doubt fosters the interpretation of 
symbolic entities as physical entities in their own right. One speaks of energy, for 
instance, as "being" mc2, without thinking of that expression as shorthand for a 
complex proportion of intu- 
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itable ratios among physical quantities. Nevertheless, one should think that the 
equations of modern mathematical physics are at least in principle indirectly 
redeemable in intuition. This turns out not to be the case, as an example will 
demonstrate. 

In Hermann Minkowski's 1908 formulation of four-dimensional "space-time" for 
Einstein's special theory of relativity, a physical quantity later designated the 
"space-time interval" is introduced. We first introduce a space-time coordinate system 
("Minkowski diagram") in which time and space are represented respectively on the 
vertical and horizontal axes of a Cartesian coordinate plane. Each point in the diagram 
represents an "event" in space-time, with its proper space (x) and time (y) coordinates. 
A locus of points representing successive events (positions) associated with a body in 
motion designates that body's "world line" (fig. 4).40 

 
Figure 4 

Since Einstein's "principle of relativity" dictates that the laws of nature be the same for 
all coordinate systems, regardless of their motion relative to one another,41 his original 
formulation of the special theory of relativity contains a set of equations (the "Lorentz 
transformation") on the basis of which may be derived the coordinates for an event in 
one coordinate system based on the coordinates for that same event in another 
coordinate system in motion relative to the first. It turns out that for any two events, the 
invariant quantity c2f—x2 (c=velocity of light, t=time, x=distance) is defined for all 
coordinate systems. This quantity mathematically resembles the invariant distance 
x2+y2 between two points in space for a rotation of coordinate axes (see fig. 5), 
suggesting the possibility that the Lorentz transformation might itself be a kind of 
"rotation of axes" in a four-dimensional "space-time." In that case, we could speak of 
the "space-time interval" (s2) between two events. 
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It turns out that the analogous rotation of axes can be performed and the invariant 
space-time interval obtained, if we employ a "hyperbolic" trigonometry in which 
angles are measured on arcs of a hyperbola (as opposed to arcs of a circle as in regular 
trigonometry): 

 

Figure 5. In the diagram on the left, the distance between the origin and 
point P clearly remains invariant when the coordinate axes are rotated 
through an angle. In the "space-time" rotation on the right, which 
represents a change from one coordinate system to another in motion 
relative to the first, the space-time interval remains the same. Note, 
however, that while the invariant distance in (a) is the distance between 
the origin and point P, this is not the case for the invariant space-time 
interval in (b). 

What is the link between the invariant c2t2-x2 and the physical world, such that the 
former can be interpreted as a really existing space-time interval as opposed to being 
merely a mathematical artifact? Clearly the quantity c2t2-x2 cannot itself be a 
space-time interval since it has units of distance.42 And it is of no avail to assert that 
since c2t2 expresses time in units of distance, we can interpret c2t2-x2 as an actually 
existing space-time interval. For since c2t2 is merely a spatial magnitude being used to 
represent time, this would indeed be to confuse the means of representation with the 
thing represented! It is customary, therefore, to regard the velocity of light as unity, and 
to substitute for c the symbolic and dimensionless number "1." The expression c2t2-x2 is 
by this means transformed to T-x2 (where T=1t). But what now renders possible 
arithmetically the subtraction of x2 (an interval of distance) from the heterogeneous T2 
(an interval of time)? Only symbolic mathematics, which allows us to perform the 
operation on two dimensionless numbers and then plug the result back into the units of 
space-time. And, by contrast with our previous examples, in this case there is no way 
of interpreting T2-x2 as symbolic shorthand for something intu-itable in the sensuous 
life-world. The space-time interval is an irre-ducibly symbolic entity.43 

What justifies the non-intuitive operation T2-x2 scientifically? Simply this, that 
measured times and distances in the life-world, contingent as they are on an arbitrary 
choice of coordinate systems, cannot represent 
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the "real world." Thus, space and time of necessity constitute a homogeneous 
four-dimensional continuum, notwithstanding the fact that as phenomena in the 
life-world they are irreducibly heterogeneous.44 Consequently, the space-time interval, 
an irreducibly symbolic entity seemingly enjoying no intuitive sense in principle, is the 
truly real, while times and distances experienced in the life-world by actual observers 
are mere appearances. Husserl's "life-world," the "only real world," is now precisely 
the unreal world, and symbolic space-time is now the truly real world.45 Thus, 
Minkowski concludes that the postulate of relativity, according to which "only the 
four-dimensional world in space and time is given by phenomena [my emphasis]" 
could be more appropriately termed the "postulate of the absolute world [Minkowski's 
emphasis]."46 One could hardly devise a more complete reversal of Husserl's 
phenomenology of the life-world. 

It is worth quoting, to conclude our discussion of this example, physicist David 
Bohm's remarks on the conceptualization of the world inherent in Minkowski's 
approach: "In the procedure described above [the Minkowski diagram], the analysis of 
the world into constituent objects has been replaced by its analysis in terms of events 
and processes, organized, ordered, and structured so as to correspond to the 
characteristics of the material system that is being studied."47 Corporeal beings them-
selves, in other words, are to be replaced by "events" defined in terms of "order" within 
a symbolic calculus, this symbolic representation "corresponding to" rather than 
directly representing the physical world. In this systematic interpretation of space-time, 
we have the exact counterpart in mathematical physics of the symbolic representation 
of number inaugurated by Vièta. Rendered systematically, the real entity becomes a 
nodal point or terminus, as it were, in a nexus of relations determined by the method of 
representation. 

4. Conclusion 

Arthur Stanley Eddington famously remarked upon the "doubling" of the life-world by 
the world of mathematical physics. Yet, to a significant extent, our life-world is, as 
Klein suggests, already itself a symbolically reified world: 

These features of the mathesis universalis, which appear most forcefully 
in our Science of Nature and dominate our entire manner of thinking, can, 
I trust, be traced in the social and economic fields in which we live. 
Along the lines of our society, every one of us must "do his job" 
according to certain rules imposed on us by ever-working machineries. 
The production and consumption of goods have acquired a sort of 
"automatic" character. No one can escape 
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the fatality which is the result of this automation. Our life, then, even our 
most intimate life, is completely conditioned by social and economic 
necessities which are alien to ourselves and which we nevertheless accept as 
the true expression of ourselves. Our work, our pleasures, even our love and 
our hatred are dominated by these all-pervading forces which are beyond our 
control.48 

Only this, it seems to me, can explain the propensity of scientists to project their 
symbolic constructions onto the life-world as if the latter existed in seamless 
continuity with the symbolic mathematical world. It is not so uncommon, for instance, 
to come upon claims such as that, since time has no independent standing in modern 
physics, the perceived "flow" of time is an illusion. Physicist Paul Davies, a prolific 
writer of popular books on science, suggests that, if we were to think more 
relativistically and "pin down those brain processes" that give us the illusion of the 
passage of time, we could rid ourselves of the fear of death.49 But in reality, thinking 
relativistically can have no effect whatsoever on our life-world experience of time, 
since in the life-world, time is always and essentially distinct from space. And it is not 
true, as is often suggested, that this is merely because we lack the experience of 
traveling at velocities appreciably large in comparison with the velocity of light. Were 
we to experience such velocities, we would also experience a number of relativistic 
effects we are not used to experiencing, such as the motion-dependency of clock rates, 
mass, and so forth. But we would still experience the world from a specific frame of 
reference, never from the symbolic perspective of "space-time," and time would 
remain fundamentally distinct from space. There is a poignant anecdote about Einstein 
trying to console himself on the death of his friend Michele Besso by calling to mind 
the irreality of the flow of time in the theory of relativity. Perhaps it is true that 
"space-time" gestures toward a transcendent reality in which things are not subject to 
the passage of time: that, as Augustine suggests, eternity upholds time, whose parts— 
past, present, and future—are all forms of non-being.50 Needless to say, this alters 
nothing about the reality of time and death in the life-world. The idea that it does is 
symptomatic of the "symbolic unreality" (Klein) in which we live. 

Husserl's project of desedimentation presupposes that any concept of physics that 
lacks at least an indirect life-world fulfilling sense is devoid, ipso facto, of any valid 
sense at all. However, precisely the type of historical investigation recommended by 
Husserl's Crisis calls this supposition into question.51 For modern mathematical 
science represents its object (the natural world) through a form of eidetic intuition 
terminating in its own symbolic structure. It cannot connect to the sensuous life-world 
via corresponding intuitions in the life-world, but 
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rather solely via a correlation between its eidetic intuitions (symbolic mathematical 
formulae) and sensuous intuitions in the life-world (experimental observations). These 
life-world, experimental observations cannot in general be regarded (and are not so 
regarded by scientists themselves) as intuitive fulfillments of the symbolic meaning 
intentions of mathematical physics, since they do not intuit the objects of mathematical 
physics as those objects are intended, but rather merely correspond to those meaning 
intentions. The experimental evidence for "space-time" comprises, for instance, tracks 
on a photographic plate exposed to high energy particles and the like. Space-time itself 
simply cannot make an appearance, even indirectly, to life-world intuition. 

In the context of Husserlian phenomenology, the question must consequently arise 
as to whether the concepts and symbolic formulae of mathematical physics are thereby 
rendered inauthentic—whether mathematical physics, that is, finally deals in 
impossible meanings (such as "space-time"). In that event, modern mathematical 
physics would simply be a powerful tool for making predictions and manipulating 
nature technologically, but not a science in Husserl's sense. While Husserl does not in 
general seem to have countenanced the possibility, his commitment to the life-world as 
the "only real world" must inevitably lead to the conclusion that symbolic mathematical 
physics is not science per se, since, while the regional ontology governing symbolic 
mathematical physics is one of real rather than ideal objects, its symbolic meaning 
formations are nevertheless irredeemable in the life-world. While an adequate 
treatment of whether it is the right conclusion is beyond the scope of this essay, the 
weight of our analysis, it seems to me, points the other way. Certainly the issue cannot 
be decided by an a priori commitment to the life-world inimical to the very spirit of 
transcendental phenomenology. To be sure, at the level of life-world experience, the 
concept of "space-time" is incoherent, projecting as it does a mathematical 
homogeneity on space and time when they are experien-tially heterogeneous. However, 
mathematical physics does not merely generate symbolic formulae and test their 
predictions experimentally. Meaning accrues to these very formulae via the conceptual 
structure of theories. In our example, the conceptual structure of the theory of relativity 
reveals an incoherence in our life-world concepts of space and time. For while the 
intuited heterogeneity of space and time logically implies the existence of a privileged 
frame of reference for which alone the laws of nature are valid, the concept of such a 
privileged frame of reference appears itself to harbor a sedimented incoherence. From a 
phenomenological perspective, then, it would appear that the life-world itself embodies 
impossible meanings. 
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Mathematical physics consequently is led to construct a symbolic realm of 
meaning, transcending the life-world. Indeed, in some mysterious way, nature seems to 
make an appearance "in person" through this symbolic realm, the latter accessible only 
to a mathematical-symbolic form of eidetic intuition and in principle hidden from 
sensuous experience in the life-world. The symbolic reification of method appears 
even to enjoy, in the words of Minkowski, a kind of "pre-established harmony" with 
nature itself.52 The irony of the situation is that, perplexed as he is in The Crisis about 
how the initial modern impulse to "rigorous science" becomes derailed, so to speak, in 
historically given science, Husserl evidently fails to see that the very demand for a 
transparent evidentiary foundation in the life-world for science may be regarded as a 
reification of the phenomenological method itself. In this connection, Hans 
Blumenberg, commenting on Husserl's interpretation of Galileo, rightfully observes 
that, "[a]s a philosopher of history . . . [Husserl] remained the Cartesian he had always 
been."53 For what ensures that the world gives itself transparently in direct intuition of 
the life-world, as prescribed by Husserlian phenomenology? 

Our modest attempt at desedimenting "space-time" suggests that the life-world 
cannot function as a horizon for meaning in the way Husserl desires, because it is a 
self-transcending horizon for meaning. The concept of "space-time," after all, has its 
very genesis in the attempt to render experienced time intuitively consistent with itself 
by defining the physical conditions for the possibility of its objective determination.54 

Symbolic mathematical physics, indeed, finally seems to transcend its own historical 
genesis as reification of method, comes bearing gifts of unanticipated beauty and 
grace. So, at least, describes the physicist Heinrich Hertz regarding Maxwell's 
electromagnetic field equations: "It is impossible to study this wonderful theory 
without feeling as if the mathematical equations had an independent life and 
intelligence of their own, as if they were wiser than ourselves, indeed wiser than their 
discoverer, as if they gave forth more than he had put into them."55 If such a thought 
has any merit, then at least one task of historical phenomenology of science is to 
distinguish such genuine gifts from the thoughtless reification of symbolic method 
reprehended by Husserl. Symbolic mathematical physics, it would seem, is indeed one 
path to that "only real world" that must finally condition the life-world itself. 

NOTES 

1. Edmund Husserl, The Crisis of European Sciences and Transcendental 
Phenomenology, trans. David Carr (Evanston: Northwestern University Press, 
1970). 
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2. Ibid., p. 58. 
3. Ibid., pp. 49-50. 
4. As is well-known, Husserl's account of the origin of geometry appeals to the 

tradition of practical measurement as an infinitely perfectible art yielding idealized 
"limit-shapes" (see ibid., pp. 24-8, 375-8). This process of idealization, scientifically 
realized in Euclidean geometry and sedimented in the received geometrical 
tradition, is identified unawares by Galileo with physical body itself. Thus, Galilean 
science is simultaneously revealed in its original intuitive evidence (the perception 
of empirical shapes) and exposed as a "surreptitious substitution" of idealities for 
the real world. Husserl's interpretation of the origin of geometry has been criticized 
and seems questionable in a number of respects. It is not clear, for instance, that the 
origin of geometry lies in the kind of progressive approximation to limit-shapes 
through practical measuring that Husserl describes. Patrick Heelan argues that the 
scientific practice of measurement assumes no such limiting processes, being rather 
governed by pragmatic considerations of appropriateness in a given context (see 
Patrick Heelan, "Husserl's Later Philosophy of Natural Science," Philosophy of 
Science 54:3 (1987), pp. 368-90). Moreover, a more "Platonic" account, if you will, 
would see in the very teleology of approximation a forehaving or "recollection," as 
it were, of such geometrical idealities themselves. On such a view, the geometrical 
idealization of nature involves no necessary substitution of the ideal for the real, 
since bodies appearing to sense perception are constituted already in their very 
being by a participation (-------) in ideal mathematical forms (Husserl mentions this 
possibility in passing but does not pursue it; see Husserl, The Crisis, p. 23). There is 
in fact some evidence that Galileo is indeed "Platonic" in at least the sense we have 
indicated. In the Dialogue Concerning the Two Chief World Systems, for instance, 
Galileo appeals to the Platonic doctrine of recollection ("nostrum scire sit quoddam 
reminisce"; see Galileo Galilei, Dialogue Concerning the Two Chief World 
Systems—Ptolemaic & Copernican, trans. Stillman Drake, 2nd rev. ed. [Berkeley: 
University of California Press, 1967], pp. 90-1). The question of Galileo's 
"Platonism" is beyond the scope of this essay, but it has received extensive 
discussion among scholars. Suffice it to say that, while from the perspective of his 
conviction that the corporeal world is the proper object of genuinely scientific 
knowledge, Galileo clearly is no "Platonist," he is, nonetheless, in some sense 
Platonic, or perhaps, better, Pythagorean, in his conviction that mathematics gov-
erns the intelligibility of the physical cosmos. However, in the context of Husserl's 
enterprise, such categorizations are wide of the mark, since what Husserl decries in 
Galilean science is something constitutive of a distinctly modern outlook. For some 
helpful discussions along with references to literature on the issue of Galileo and 
Platonism, see, for example, Hans Blumenberg, The Genesis of the Copernican 
World, trans. Robert M. Wallace (Cambridge: MIT Press, 1987), pp. 410-9; 
Dominique Dubarle, "Galileo's Methodology of Natural Science," in Galileo: Man of 
Science, ed. Ernan McMullin (New York: Basic Books, 1967), pp. 295-314; Thomas 
P. McTighue, "Galileo's 'Platonism': A Reconsideration," in Galileo: Man of 
Science, pp. 365-87; and Ernst Cassirer, who addresses the issue in several 
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works, for example, "Mathematical Mysticism and Mathematical Science," trans. 
Ernan McMullin, in Galileo: Man of Science, pp. 338-51. 

5. Husserl, The Crisis, pp. 22, 8. 
6. Ibid., p. 51. 
7. Klein's seminal work on the theme is Greek Mathematical Thought and the Origin 

of Algebra, trans. Eva Brann (Cambridge: MIT Press, 1968). It is based on work 
carried out in the early 1930s, and, thus, actually predates Husserl's Crisis (see 
Burt C. Hopkins, "Crisis, History, and Husserl's Phenomenological Project of 
Desedimenting the Formalization of Meaning: Jacob Klein's Contribution," 
Graduate Faculty Philosophy Journal 24:1 [2003], p. 89). There is a number of 
later essays by Klein bearing on the subject collected in Jacob Klein: Lectures and 
Essays, ed. Robert B. Williamson and Elliot Zuckerman (Annapolis: St. John's 
College Press, 1985), the most important of which is "The World of Physics and 
the 'Natural' World" (pp. 1-34). Thomas Ryckman, in The Reign of Relativity: 
Philosophy in Physics 1915-1925 (Oxford: Oxford University Press, 2005), has 
recently highlighted the work of Hermann Weyl, who under the influence of 
Husserl's transcendental phenomenology, attempted a form of phenomenological 
reconstruction of the general theory of relativity, during the period between 
1918-23. I will not be addressing Weyl in the present essay. 

8. Klein, "Modern Rationalism," in Lectures and Essays, p. 61. 
9. Ibid., p. 64. 
 

10. Hopkins, "Crisis, History, and Husserl's Phenomenological Project," p. 100. For a 
similar view, see Ian Angus, "Jacob Klein's Revision of Husserl's Crisis: A 
Contribution to the Transcendental History of Reification," Philosophy Today 49:5 
(2005), pp. 204-11. 

11. For a general treatment of Klein's interpretation in Greek Mathematical Thought, 
see Burt C. Hopkins, "Jacob Klein on François Vièta's Establishment of Algebra as 
the General Analytical Art," Graduate Faculty Philosophy Journal 25:2 (2004), 
pp. 51-85. 

12. Klein, Greek Mathematical Thought, pp. 175-6. 
13. Ibid., pp. 174-5. Klein's account in "The World of Physics and the 'Natural' World," 

in Lectures and Essays, pp. 17-21, 24-6, et passim, is somewhat easier to follow. 
14. See Klein, "Phenomenology and the History of Science," in Lectures and Essays, 

p. 81. It is worth pointing out that the original conception of number still echoes in 
our everyday speech, for example, when we say such things as, "I have a number 
of friends coming over tonight" (a good joke on one's spouse if the number is zero). 

15. While Vièta himself still attempts to observe a "rule of homogeneity" in his 
algebra, the symbolic conception of number in principle renders it irrelevant. 
Descartes, in his Geometry, for instance, treats both numbers and symbolic line 
lengths as dimensionless entities. 
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16. Husserl, in Formal and Transcendental Logic, speaks of the "non-predicative" 
evidence of non-categorially mediated experience: "Accordingly, from these 
genetical points of view, the intrinsically first judgment-theory is the theory of 
evident judgments, and the intrinsically first thing in the theory of evident 
judgments (and therefore in judgment-theory as a whole) is the genetical tracing of 
predicative evidences back to the non-predicative evidence called experience" 
(Edmund Husserl, Formal and Transcendental Logic, trans. Dorion Cairns [The 
Hague: Martinus Nijhoff, 1978], p. 209). 

17. The "fulfilling sense" is the "object's ideal correlate in the acts of 
meaning-fulfillment which constitute it" (more specifically, the "ideal unity" of its 
possible meaning fulfillments) (Husserl, Logical Investigations, vol. 1, trans. J.N. 
Findlay [London: Routledge and Kegan Paul, 1970], p. 290). For instance, the 
empty intention of an automobile is fulfilled when the automobile itself is 
encountered intuitively (by seeing it in the driveway, and so forth). However, the 
one selfsame automobile implies an infinite horizon of possible meaning 
fulfillments (it can be seen from various angles, for example), the ideal unity of 
which is its "fulfilling sense." 

18. In Logical Investigations, pp. 291-5, Husserl defines "impossible meanings" as 
meaning intentions that in principle lack a fulfilling sense. The genetic treatment 
demanded by this notion, suggesting as it does sedi-mented incoherencies, comes 
only later in Husserl's writings, especially Formal and Transcendental Logic. 

19. In other words, just as 3 times 2 can be understood as 0+2+2+2=6, -3 times -2 can 
perhaps be cashed in as 0-(-2)(-2)-(-2)=6. 

20. "Irrational" numbers are numbers that cannot be expressed as whole number 
fractions (or "ratios" in the modern sense of the term). 

21. See, for instance, Klein, "The opposition of logistic and arithmetic in the 
Neoplatonists," chap. 2 of Greek Mathematical Thought, pp. 10-6. 

22. See Klein, "The Arithmetic of Diophantus as theoretical logistic. The concept of 
eidos in Diophantus," chap. 10 of Greek Mathematical Thought, pp. 126-49. 

23. See Klein, "Modern Rationalism," pp. 59-60. 
24. An "authentic" meaning is for Husserl simply one for which there exists a 

fulfilling sense. 
25. Husserl, The Crisis, p. 295. 
26. Hopkins, "Crisis, History, and Husserl's Phenomenological Project," p. 82. 
27. Klein's discussion of Descartes' geometry can be found in Greek Mathematical 

Thought, pp. 197-211; and "The World of Physics and the 'Natural' World," pp. 
12-21. 

28. "It is easy to conclude from this that it will be very useful if we transfer what we 
understand to hold for magnitudes in general to that species of magnitude which is 
most readily and distinctly depicted in our imagination. But it follows from what 
we said . . . that this species is the real extension of a body considered in 
abstraction from everything else about it 
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save its having a shape" (René Descartes, Rules for the Direction of the Mind, in 
The Philosophical Writings of Descartes, vol. 1 trans. John Cottingham, Robert 
Stoothoff, and Dugald Murdoch [Cambridge: Cambridge University Press, 1985], 
p. 58). 

29. René Descartes, The Geometry of René Descartes, trans. David Eugene Smith and 
Marcia L. Latham (New York: Dover, 1954), p. 2. 

30. Ibid., p. 5. 
31. See Klein, Greek Mathematical Thought, pp. 210-1; and "The World of Physics 

and the 'Natural' World," p. 21. It is not clear the extent to which Klein wishes to 
claim that Cartesian symbolic space grounds the physics of Newton himself as 
opposed to a more generally conceived "Newtonian physics." In Greek 
Mathematical Thought, p. 211, he says that Cartesian symbolic space is the 
"foundation on which Newton will raise the structure of his mathematical science 
of nature," while in the later essay, p. 21, he refers simply to "Newtonian physics." 

32. John A. Schuster, "Descartes' Mathesis Universalis: 1619-28," in Descartes: 
Philosophy, Mathematics and Physics, ed. Stephen Gaukroger (Sussex: Harvester 
Press, 1980), p. 193n.l29. In Descartes' Regulae, the symbolic employment of 
extension is clearly in the interest of legitimating universal mathematics, the object 
of which is identical to the object of Descartes' projected "physico-mathematics." 
That is to say, the identification of the "real extension" functioning symbolically in 
the mathesis universalis of rule fourteen, the science of "general magnitude" or 
"order and measure," and the extension indirectly impressed by external objects 
upon the corporeal imagination in the mechanistic account of perception set forth 
in rule twelve, certify "physico-mathematics" as a genuine science of the corporeal 
world. While the legitimatory program of the Regulae is superseded in later 
writings, especially the Meditations, the imagination must still play some 
legitimatory role, since it alone can serve as medium for the transmission of sense 
information regarding the actual shapes of external bodies. On the reasons for the 
eclipse of the legitimatory program of the Regulae, see ibid., pp. 73-9. Klein notes 
the decline of the legitimatory regime of the Regulae in Descartes' later writings, 
but insists that the symbolic conception of actual space remains "essentially 
untouched" by this later development (see Klein, Greek Mathematical Thought, 
pp. 308-9n. 328). 

33. It has in fact recently been argued that the first lines of Newton's preface to the 
Principia, in which geometry is said to be "founded on mechanical practice" 
(Mathematical Principles of Natural Philosophy, trans. Andrew Motte, rev. ed., 
Florian Cajori [Berkeley: University of California Press, 1934], p. xvii), are 
directed against Descartes' algebraic method as laid out in the Geometry—and for 
reasons having to do with the latter's "constructive" character or perceived lack of 
intuitive content (see Mary Domski, "The Constructible and the Intelligible in 
Newton's Philosophy of Geometry," Philosophy of Science 70:5 [2003], pp. 
1114-24; and Niccolo Guicciardini, "Geometry and Mechanics in the Preface to 
Newton's Principia: A Criticism of Descartes' Géométrie," Graduate Faculty 
Philosophy Journal 25:2 [2004], pp. 119-59). Such a polemic does not, of 
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course, preclude the possibility of Newton having "internalized" unawares, as it 
were, Cartesian symbolic space. But once again, such a claim requires specific 
historical evidence. 

34. Descartes, Principles of Philosophy, in The Philosophical Writings of Descartes, 
vol. 1, p. 240. 

35. This is not quite precise, since not even homogeneous quantities can be multiplied 
intuitively, multiplication being a process of repeated addition of a quantity to 
itself. In our present-day algebra, we multiply dimension-less symbolic numbers. 

36. See John Wallis, A Treatise of Algebra, Both Historical and Practical (London, 
1685), pp. 134-6; and John J. Roche, The Mathematics of Measurement: A Critical 
History (London: The Athlone Press, 1998), p. 87. 
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38. Isaac Newton, Mathematical Principles of Natural Philosophy, trans. Andrew 

Motte, rev. ed. by Florian Cajori (Berkeley: University of California Press, 1934), 
pp. 23, 5. 

39. Pierre Simon de Laplace, Traité de mécanique céleste, vol. 1 (Paris: Imprimerie 
Royale, 1843-6), p. 15, cited in John J. Roche, The Mathematics of Measurement 
(London: The Athlone Press, 1998), p. 138. 

40. As is customary, for convenience we include here only one spatial dimension. 
41. It follows from the relativity of motion that no particular frame of reference is 

privileged over another. In the special theory of relativity, the principle of 
relativity is limited to "inertial" or unaccelerated reference frames. 

42. This follows from the fact that the product of velocity and time is distance. 
43. The mathematically adept reader may remark that since the interval s2 can take on 

a negative value, the concept of "space-time" ascribes physical significance to an 
inherently symbolic "imaginary number." However, the square-root function in 
symbolic mathematics can be intuitively rendered as the inverse of a compound 
(duplicate) ratio, such that the problem of the square-root of a negative number is 
reduced to the simple problem of negative numbers themselves. As mentioned 
above, negative numbers are intuitively redeemable in terms of a departure from a 
neutral reference point. In the present case of space-time, the neutral reference 
point is the null interval of the world-line of a ray of light, from which depart 
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44. "Homogeneous" here means that time is regarded, and can be treated 
mathematically, as one more dimension of an overarching "space-time," rather 
than as an independent dimension over against the three dimensions of space. 

45. Husserl, The Crisis, pp. 48-9. 
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