Providence College

DigitalCommons@Providence

Engineering & Physics Faculty Publications

Engineering & Physics

5-26-2010

Experimental Studies of the NaCs 53 Π 0 and 1(a)3 Σ + States

Seth T. Ashman Providence College, sashman@providence.edu

Brett McGeehan Lehigh University

Christopher Wolfe Lehigh University

Carl Faust Lehigh University

John Huennekens Lehigh University

Follow this and additional works at: https://digitalcommons.providence.edu/physics_fac

Part of the Atomic, Molecular and Optical Physics Commons

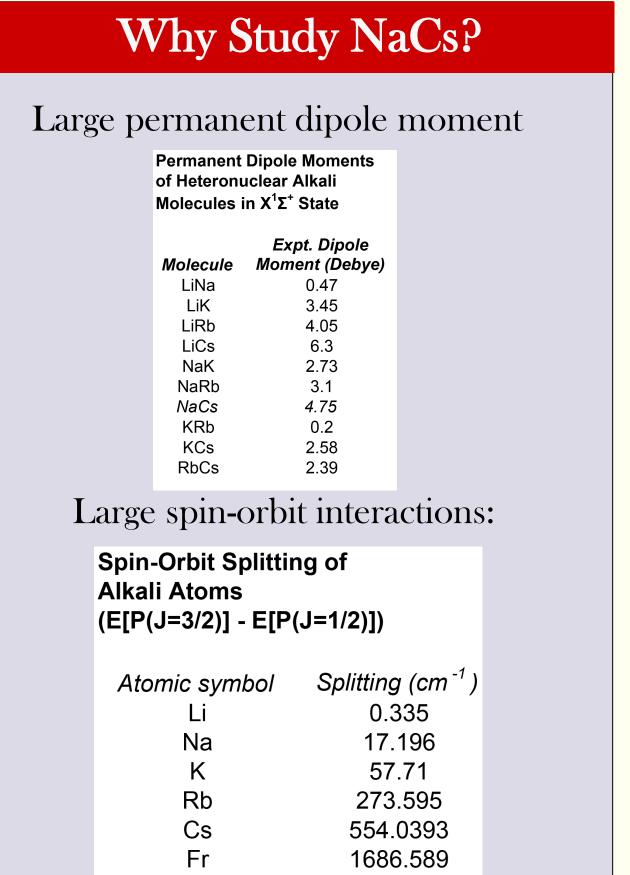
Ashman, Seth T.; McGeehan, Brett; Wolfe, Christopher; Faust, Carl; and Huennekens, John, "Experimental Studies of the NaCs 53 Π 0 and 1(a)3 Σ + States" (2010). *Engineering & Physics Faculty Publications*. 6. https://digitalcommons.providence.edu/physics_fac/6

This Conference Proceeding is brought to you for free and open access by the Engineering & Physics at DigitalCommons@Providence. It has been accepted for inclusion in Engineering & Physics Faculty Publications by an authorized administrator of DigitalCommons@Providence. For more information, please contact dps@providence.edu.

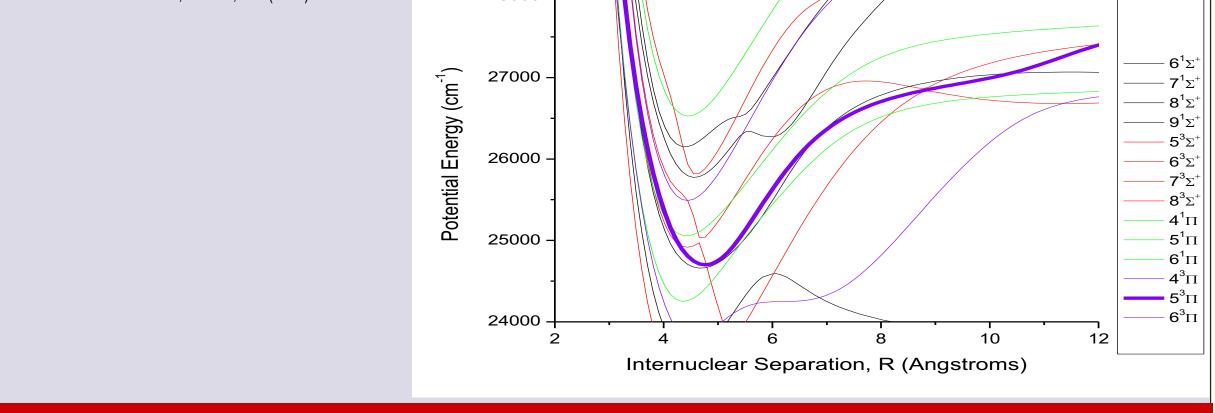
Experimental Studies of the NaCs $5^3\Pi_0$ and $1(a)^3\Sigma^+$ States S. Ashman, B. M. McGeehan, C. M. Wolfe, C. E. Faust, J. Huennekens Lehigh University, 16 Memorial Drive East, Bethlehem, PA 18015

Abstract

We present experimental studies of excited electronic states of the NaCs molecule that are currently underway in our laboratory. The optical-optical double resonance method is used to obtain Doppler-free excitation spectra for several excited states. The data that have been identified with the $5^3\Pi_0$ electronic state are used to obtain Rydberg-Klein-Rees (RKR) and Inverse Perturbation Approach (IPA) potential curves for this state. Bound-free spectra from single ro-vibrational levels of electronically excited states to the repulsive wall of the $1(a)^{3}\Sigma^{+}$ state also are recorded. Using the previously determined $5^{3}\Pi_{0}$ excited state potential, we fit the repulsive wall of the $1(a)^{3}\Sigma^{+}$ state to reproduce the experimental spectra using LeRoy's BCONT program. A slightly modified version of BCONT is also being used to fit the relative transition dipole moments, $\mu_e(\mathbf{R})$, as a function of internuclear separation, R, for the various bound-free electronic transitions.



NaCs Theoretical Potentials* 35000 Na(3s)+Cs(6p)30000 Na(4s)+Cs(6s $\frac{1Na(12)}{Na(3s)+Cs(6d)}$ 25000 · Na(3s)+Cs(7s)Na(3p)+Cs(6s)Na(3s)+Cs(5d)20000 Na(3s)+Cs(6p)15000 · 10000 · Na(3s)+Cs(6s)5000 Internuclear Separation, R (Angstroms) *M. Korek et al., JCP **126**, 124313 (2007) *M. Korek et al., CJP **78**, 977 (2000)

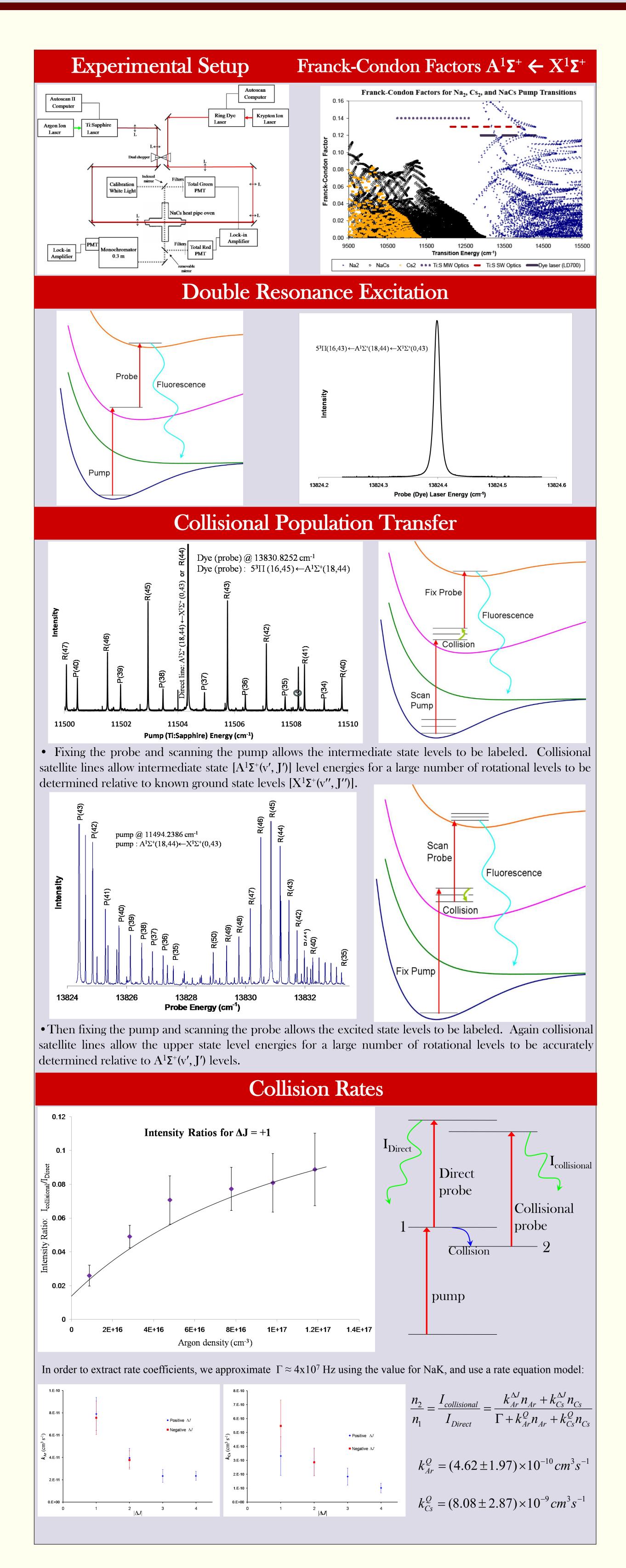


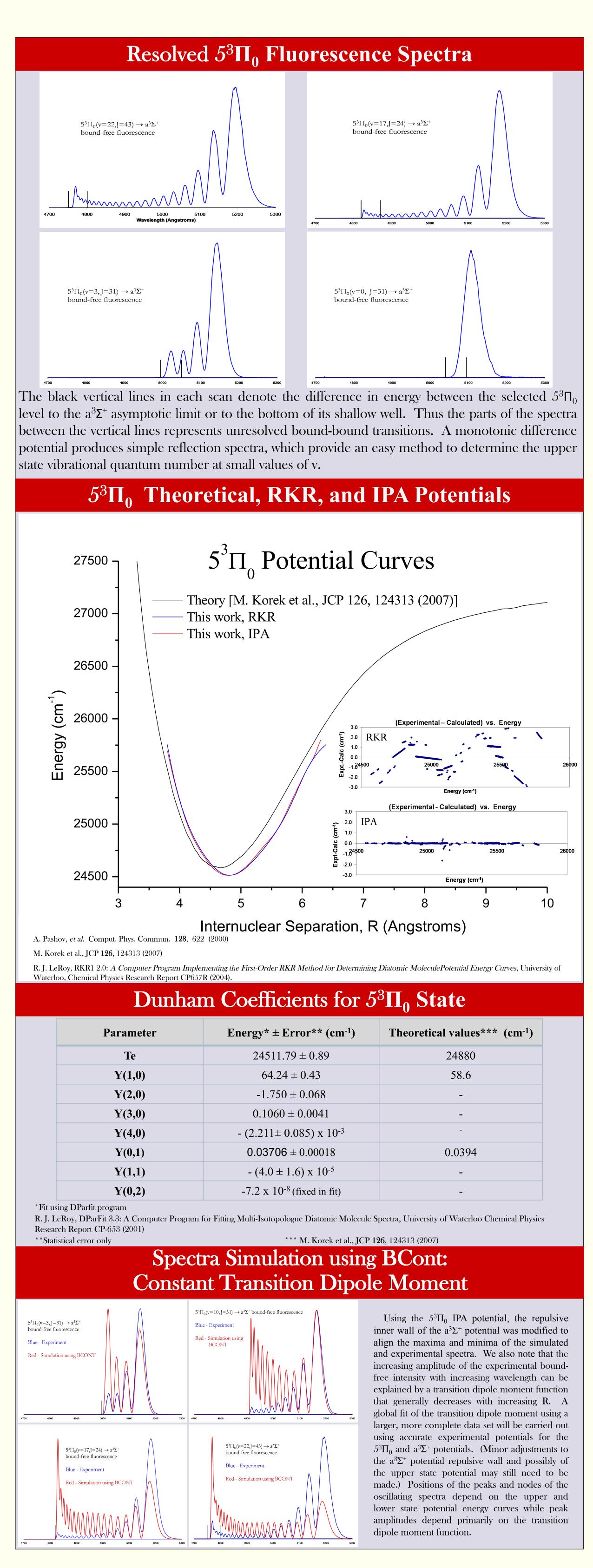
Goals

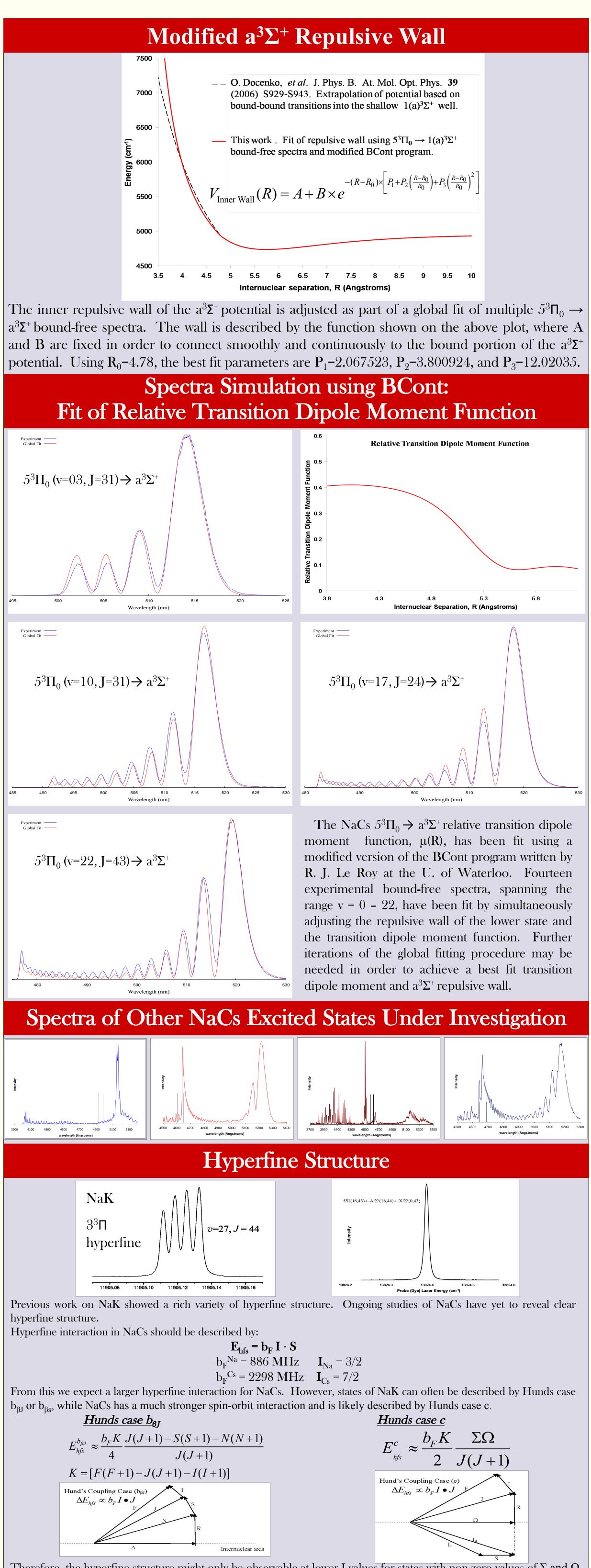
- Map excited state potentials
- Determine $5^{3}\Pi_{\Omega=0}$ potential energy curve
- Map repulsive wall of the $a^3\Sigma^+$ state
- Determine transition dipole moment function, $\mu_{e}(\mathbf{R})$, for
- transitions between levels of the $5^3\Pi_{\Omega=0}$ and $a^3\Sigma^+$ states
- Study collisional energy transfer
- Study hyperfine structure

bound-free emission continua to experimental spectra.

Study hyperfine subcture		
Transition Dipole Moment and Selection Rules		
Transition Dipole Moment Functions		
Emission intensity for bound-bound or bound free transitions is proportional to the square of the dipole matrix element		
$I_{emission}^{ik} = N_i h v_{ik} A_{ik} \qquad \text{with} \qquad A_{ik} = \frac{8\pi^2 v_{ik}^3}{3\varepsilon_c c^3 \hbar} \left \vec{\mu}_{ik} \right ^2.$	Selection Rules for Electronic Transitions	
$\Gamma_{emission} = \Gamma v_i n v_{ik} \Lambda_{ik} \qquad \text{with} \qquad \Gamma_{ik} = \frac{1}{3\varepsilon_0 c^3 \hbar} \mu_{ik} ^2$	$\Delta v = anything$	
Here, $\vec{\mu}_{ik} = \iint \Psi_i^* \hat{\mu} \Psi_k d\tau_{el} d\tau_N$ where	$\Delta J = 0, \pm 1$ with restriction that $\Delta J = 0$	
$\hat{\mu} = -e \sum_{j} \vec{r_j} + Z_A \vec{R}_A + Z_B \vec{R}_B = \hat{\mu}_{el} + \hat{\mu}_N \qquad \text{is the dipole operator.}$	$\Delta J = 0, \pm 1$ with restriction that $\Delta J = 0$ forbidden for $\Sigma \leftrightarrow \Sigma$ transitions	
The total wave function can be separated into electronic and nuclear parts, and the nuclear part can be further separated into angular (rotational) and radial (vibrational) terms:	Hund's case a)	
$\Psi\left(\vec{r}_{j},\vec{R}\right) = \phi^{el}\left(\vec{r}_{j},R\right) \cdot \psi^{N}\left(\vec{R}\right) = \phi^{el}\left(\vec{r}_{j},R\right) \frac{\chi^{vib}(R)}{R} \varphi^{rot}\left(\theta,\varphi\right).$	$\Delta S = 0$	
(Note that for bound-free transitions, the final state vibrational function must be replaced by a continuum function.)	$\Delta\Lambda=0,\pm1$	
Thus the dipole matrix element becomes: $\vec{\mu}_{ik} = \int \int (\phi_i^{el})^* (\psi_i^N)^* (\hat{\mu}_{el} + \hat{\mu}_N) \phi_k^{el} \psi_k^N d\tau_{el} d\tau_N$	$\Delta \Omega = 0, \pm 1$	
For a transition between two electronic states, initial state <i>i</i> and final state <i>k</i> , the nuclear term is zero, the angular terms of the $\hat{\mu}_{el}$ integral lead to selection rules on <i>J</i> , and the radial term leads to	Hund's case c)	
$\mu_{ik} \propto \int \chi_i^{vib}(R) \mu_{el}(R) \chi_k^{vib}(R) dR \text{with} \mu_{el}(R) = \int (\phi_i^{el})^* (\vec{r}_j, R) \hat{\mu}_{el} \phi_k^{el}(\vec{r}_j, R) d\tau_{el}.$	$\Delta\Omega = 0, \pm 1$	
Therefore, $\mu_{el}(R)$ can be obtained by fitting the intensities of bound-bound emission lines or		







Therefore, the hyperfine structure might only be observable at lower J values for states with non-zero values of Σ and Ω .