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53P0 Potential Curves

Experimental Studies of the NaCs 53Π0 and 1(a)3Ʃ+ States
S. Ashman, B. M. McGeehan,   C. M. Wolfe,   C. E. Faust,   J. Huennekens

Lehigh University, 16 Memorial Drive East, Bethlehem, PA  18015

Abstract                                   Why Study NaCs?

We present experimental studies of
excited electronic states of the NaCs
molecule that are currently underway in our
laboratory. The optical-optical double
resonance method is used to obtain
Doppler-free excitation spectra for several
excited states. The data that have been
identified with the 53Π0 electronic state are
used to obtain Rydberg-Klein-Rees (RKR)
and Inverse Perturbation Approach (IPA)
potential curves for this state. Bound-free
spectra from single ro-vibrational levels of
electronically excited states to the repulsive
wall of the 1(a)3Σ+ state also are recorded.
Using the previously determined 53Π0
excited state potential, we fit the repulsive
wall of the 1(a)3Σ+ state to reproduce the
experimental spectra using LeRoy’s BCONT
program. A slightly modified version of
BCONT is also being used to fit the relative
transition dipole moments, μe(R), as a
function of internuclear separation, R, for
the various bound-free electronic transitions.

NaCs Theoretical Potentials*

Experimental Setup

• Fixing the probe and scanning the pump allows the intermediate state levels to be labeled. Collisional
satellite lines allow intermediate state [A1Σ+(vʹ, Jʹ)] level energies for a large number of rotational levels to be
determined relative to known ground state levels [X1Σ+(vʹʹ, Jʹ′ʹ)].

Double Resonance Excitation

Resolved 53Π0 Fluorescence Spectra

Dunham Coefficients for 53Π0 State

Modified a3Ʃ+ Repulsive Wall

Spectra of Other NaCs Excited States Under Investigation

Hyperfine Structure

Large permanent dipole moment
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Large spin-orbit interactions:

Goals
•Map excited state potentials
•Determine 53ΠΩ=0 potential energy curve
•Map repulsive wall of the a3Σ+ state
•Determine transition dipole moment function, μe(R), for 

transitions between levels of the 53ΠΩ=0 and a3Σ+  states
•Study collisional energy transfer
•Study hyperfine structure

Transition Dipole Moment and Selection Rules

Collisional Population Transfer

•Then fixing the pump and scanning the probe allows the excited state levels to be labeled. Again collisional
satellite lines allow the upper state level energies for a large number of rotational levels to be accurately
determined relative to A1Σ+(vʹ, Jʹ) levels.
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Franck-Condon Factors A1Σ+ ← X1Σ+

Collision Rates

The black vertical lines in each scan denote the difference in energy between the selected 53Π0

level to the a3Σ+ asymptotic limit or to the bottom of its shallow well. Thus the parts of the spectra
between the vertical lines represents unresolved bound-bound transitions. A monotonic difference
potential produces simple reflection spectra, which provide an easy method to determine the upper
state vibrational quantum number at small values of v.

Spectra Simulation using BCont: 
Fit of Relative Transition Dipole Moment Function

*Fit using DParfit program
R. J. LeRoy, DParFit 3.3: A Computer Program for Fitting Multi-Isotopologue Diatomic Molecule Spectra, University of Waterloo Chemical Physics 
Research Report CP-653 (2001)
**Statistical error only *** M. Korek et al., JCP 126, 124313 (2007)

Parameter Energy* ± Error** (cm-1) Theoretical values***  (cm-1)

Te 24511.79 ± 0.89 24880

Y(1,0) 64.24 ± 0.43 58.6

Y(2,0) -1.750 ± 0.068 -

Y(3,0) 0.1060 ± 0.0041 -

Y(4,0) - (2.211± 0.085) x 10-3 -

Y(0,1) 0.03706  ± 0.00018 0.0394

Y(1,1) - (4.0 ± 1.6) x 10-5 -

Y(0,2) -7.2 x 10-8 (fixed in fit) -
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NaK

33Π
hyperfine

Previous work on NaK showed a rich variety of hyperfine structure. Ongoing studies of NaCs have yet to reveal clear
hyperfine structure.
Hyperfine interaction in NaCs should be described by:

Ehfs = bF I ·∙ S
bF

Na = 886 MHz      INa = 3/2
bF

Cs = 2298 MHz    ICs = 7/2
From this we expect a larger hyperfine interaction for NaCs. However, states of NaK can often be described by Hunds case
bβJ or bβs, while NaCs has a much stronger spin-orbit interaction and is likely described by Hunds case c.
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In order to extract rate coefficients, we approximate  Γ ≈ 4x107 Hz using the value for NaK, and use a rate equation model:
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Therefore, the hyperfine structure might only be observable at lower J values for states with non-zero values of Ʃ and Ω.

*M. Korek et al., JCP 126, 124313 (2007)

*M. Korek et al., CJP 78, 977 (2000)

53Π0 Theoretical, RKR, and IPA Potentials

Spectra Simulation using BCont: 
Constant Transition Dipole Moment

A. Pashov, et al.  Comput. Phys. Commun.  128,  622  (2000)

M. Korek et al., JCP 126, 124313 (2007)

R. J. LeRoy, RKR1 2.0: A Computer Program Implementing the First-Order RKR Method for Determining Diatomic MoleculePotential Energy Curves, University of 
Waterloo, Chemical Physics Research Report CP657R (2004).

Using the 53Π0 IPA potential, the repulsive
inner wall of the a3Ʃ+ potential was modified to
align the maxima and minima of the simulated
and experimental spectra. We also note that the
increasing amplitude of the experimental bound-
free intensity with increasing wavelength can be
explained by a transition dipole moment function
that generally decreases with increasing R. A
global fit of the transition dipole moment using a
larger, more complete data set will be carried out
using accurate experimental potentials for the
53Π0 and a3Σ+ potentials. (Minor adjustments to
the a3Σ+ potential repulsive wall and possibly of
the upper state potential may still need to be
made.) Positions of the peaks and nodes of the
oscillating spectra depend on the upper and
lower state potential energy curves while peak
amplitudes depend primarily on the transition
dipole moment function.
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The NaCs 53Π0→ a3Σ+ relative transition dipole
moment function, µ(R), has been fit using a
modified version of the BCont program written by
R. J. Le Roy at the U. of Waterloo. Fourteen
experimental bound-free spectra, spanning the
range v = 0 – 22, have been fit by simultaneously
adjusting the repulsive wall of the lower state and
the transition dipole moment function. Further
iterations of the global fitting procedure may be
needed in order to achieve a best fit transition
dipole moment and a3Σ+ repulsive wall.
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53Π0 (v=22, J=43)→ a3Σ+

53Π0 (v=17, J=24)→ a3Σ+53Π0 (v=10, J=31)→ a3Σ+

53Π0 (v=03, J=31)→ a3Σ+

The inner repulsive wall of the a3Σ+ potential is adjusted as part of a global fit of multiple 53Π0 →
a3Σ+ bound-free spectra. The wall is described by the function shown on the above plot, where A
and B are fixed in order to connect smoothly and continuously to the bound portion of the a3Σ+

potential. Using R0=4.78, the best fit parameters are P1=2.067523, P2=3.800924, and P3=12.02035.
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