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Abstract

We report current work to study transfer of population and orientation in collisions 
of NaK molecules with argon and potassium atoms using polarization labeling (PL) 
and laser- induced fluorescence (LIF) spectroscopy.  In the PL experiment, a 
circularly polarized pump laser excites a specific NaK A1Σ+(v’=16, J’) ← 
X1Σ+(v’’=0, J’ ± 1) transition, creating an orientation (non-uniform mJ’ level 
distribution) in both levels. The linearly polarized probe laser is scanned over 
various 31Π(v, J’±1) ← A1Σ+(v’’=16, J’) transitions. The probe laser passes 
through a crossed linear polarizer before detection, and signal is recorded if the 
probe laser polarization has been modified by the vapor (which occurs when it 
comes into resonance with an oriented level). Using both spectroscopic methods, 
analysis of weak collisional satellite lines adjacent to these directly populated lines, 
as a function of argon buffer gas pressure and cell temperature, allows us to 
discern separately the effects collisions with argon atoms and potassium atoms 
have on the population and orientation of the molecule. In addition, code has been 
written which provides a theoretical analysis of the process, through a solution of 
the density matrix equations of motion for the system.
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Polarization Spectroscopy
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Heat pipe filled with a 
mixture of Na and K 
at 280-380 °C, with 
0.5-8 torr Ar as buffer

Due to asymmetric mJ distribution created by circular polarized pump beam 
(Δm = +1 for right circular polarization), vapor is birefringent for any probe 
that shares upper, lower, or both levels of pump transition

Note: linearly polarized probe can be thought of as equal components of 
left and right circular polarization. (Δm = -1 and +1)
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Transfer of Orientation (Polarization Spectroscopy)

Polarization signal depends on the difference of absorption between left and right 
circular polarization components of the linearly polarized probe beam

Can model this using:
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J3=3

Density Matrix Model

( ) termsrelaxationHHi
k

kmnkkmnknm +--= å rrr
!

"

Sample Computer Model Results

Future Plans
• Find an appropriate theoretical model for the change in orientation during a collision to 

incorporate into density matrix
• Investigate ground state collisional lines

• Thus far we have only investigated excited state collisional lines
• v-changing collisions have been observed in ground state.  We plan to investigate these 

in greater detail
• At Temple U., we have observed ground state collisional lines for very large ∆J (up to ∆J =58) 

in polarization spectroscopy of Rb2
• How can orientation be preserved in collisions where J changes by a very large amount?

• Effects on orientation/population by other collsion partners (He, Xe, Kr)
• Propensity toward ∆J = ± 2, ± 4 not observed in NaCs

• Is this due to NaCs being “more heteronuclear” than NaK?

Additional PMTs on 
sidearms to collect 
fluorescence for 
fluorescence-based 
spectroscopic 
measurements

Red: Pump
Blue: Probe

State 1

g.s. level
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Collisional Transfer

1. Population and orientation are transferred from state 1 to state 2
2. Population and orientation are lost from state 2 due to subsequent 

collisions and radiative decay 

Collisional effects on population and orientation can be divided into two 
types:

Ratio of fluorescence intensities is roughly equal to the ratio of 
population densities in the collisionally and directly populated level

Using a rate equation approximation, we model this ratio as

Here kΔJ is the rate of transfer of population from level 1 to the level 
characterized by ΔJ and kQ is the total collisional quenching rate

Intensity ratios are fitted as a function of argon and potassium density in 
order to obtain population transfer rates 

Empirical models have been developed to study population and 
orientation transfer, separating the effects of argon and potassium

X1Σ (v’’, J’’ )

A1Σ (v’, J’ )

31Π (v, J ) • We use Optical-Optical Double 
Resonance (OODR) to study the NaK
molecule in both Polarization Labeling 
and Laser-Induced Fluorescence 
spectroscopy

• Quantitative study of collisional
population and orientation transfer

• Separately study the effects of 
collisions with Argon vs. Potassium
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Comparison excitation scan showing both polarization spectroscopy 
(top) and laser-induced fluorescence spectroscopy (bottom)
Direct pump-probe transition is 
31Π (7, 29) ← A1Σ (16, 30) ← X1Σ (0, 29)
Collisionally populated and oriented levels A1Σ (16, 30 + ΔJ) are labeled 
by ΔJ

-1 0 1

Left  circular  polarization,  ΔmJ =  -1
Right  circular  polarization,  ΔmJ =  +1
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Xs show relative population in mJ sublevel
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Pump creates asymmetric mJ distribution

Left and right circular components of
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In this expression, F factors are relative absorption coefficients: 

Evaluation of difference in F factors yields

Thus the ratio of polarization spectroscopy signal strengths for the collisional and direct 
line are roughly equal to the ratio of orientation multiplied by the population of the levels.  
We can use a rate equation model to solve for the ratio of the intensities of the collisional
and direct line:

Here k ΔJ,O is the rate of transfer of orientation from level 1 to the level characterized by 
ΔJ, and g is the total collisional rate of destruction of orientation. Separating out the 
population and orientation  dependence yields

fAr,K represents the fraction of orientation destroyed in the initial collision with either Ar or 
K, and g’ is the rate of destruction of orientation by subsequent collisions that do not 
change J. g’ is small compared to kQ, so we approximate

A fit of intensity ratios obtained from fluorescence and polarization spectroscopy, using 
our empirical formulas Rf and Rp, as functions of Ar or K number density has been 
carried out , for ΔJ = ±1,±2,±3,±4

Fitting Results
The parameters kAr ,  kK ,  fAr , and fK give us information on the population transferred, 
as well as the orientation destroyed, in the initial collision from the directly populated 
intermediate level to the collisional level.  

• Only ∆J = ± 2, ± 4, … transitions observed in homonuclear
molecules (like Rb2)

• kAr values are much larger for even numbered collisional
transitions than for odd numbered transitions

• kK values do not seem to show such a propensity
• f values show that collisions with potassium atoms are 

more likely to destroy angular momentum orientation than 
collisions with argon atoms
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Detuning Loop Calculations

To completely describe a system of quantum mechanical energy levels in a statistical 
manner, it is necessary to solve the density matrix equations of motion

A diagonal element ρnn represents the population of sublevel n, while an off-diagonal 
element ρnm represents the laser-induced coherence between sublevels n and m.  A 
computer code has been written which solves the density matrix equations of motion for 
either three coupled angular momentum states for the direct probe model, or four states 
for the collisional model.

J1=1

J3=1

1

3

-1 0 +1

-1 0 +1 +2-2

-1 0 +1

J2=22

J1=1

J3=2

1

3

-1 0 +1

-1 0 +1

Jc=3

2

c

J2=2

+2-2

Model Includes
• Laser coherence terms
• Fluorescence into and out of various levels
• Transit relaxation
• Additional “dump” levels representing other 

ground/intermediate levels
• Velocity group and laser detuning loops

Collisional model is equipped to 
incorporate any theoretical model for 
collisional transfer of population and 
orientation linking states “2” and “c”

Intermediate state orientations predicted for various pump-probe power regimes
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