Providence College

DigitalCommons@Providence

Engineering & Physics Faculty Publications

Engineering & Physics

5-21-2009

Polarization Spectroscopy and Collisions in NaK

Seth T. Ashman *Providence College*, sashman@providence.edu

C. M. Wolfe Lehigh University

J. Huennekens *Lehigh University*

B. Beser *Temple University*

J. Bai *Temple University*

See next page for additional authors

Follow this and additional works at: https://digitalcommons.providence.edu/physics_fac

Part of the Atomic, Molecular and Optical Physics Commons

Ashman, Seth T.; Wolfe, C. M.; Huennekens, J.; Beser, B.; Bai, J.; and Lyyra, A. M., "Polarization Spectroscopy and Collisions in NaK" (2009). *Engineering & Physics Faculty Publications*. 9. https://digitalcommons.providence.edu/physics_fac/9

This Conference Proceeding is brought to you for free and open access by the Engineering & Physics at DigitalCommons@Providence. It has been accepted for inclusion in Engineering & Physics Faculty Publications by an authorized administrator of DigitalCommons@Providence. For more information, please contact dps@providence.edu.

Authors

Seth T. Ashman, C. M. Wolfe, J. Huennekens, B. Beser, J. Bai, and A. M. Lyyra

Abstract

We report current work to study transfer of population and orientation in collisions of NaK molecules with argon and potassium atoms using polarization labeling (PL) and laser-induced fluorescence (LIF) spectroscopy. In the PL experiment, a circularly polarized pump laser excites a specific NaK A¹ $\Sigma^+(v=16, J) \leftarrow X^1\Sigma^+(v=0, J\pm 1)$ transition, creating an orientation (non-uniform M_{J} level distribution) in both levels. The linearly polarized probe laser is scanned over various $3^{1}\Pi(v=8, J'\pm 1) A^{1}\Sigma^{+}(v=16, J')$ transitions. The probe laser passes through a crossed linear polarizer before detection, and signal is recorded if the probe laser polarization has been modified by the vapor (which occurs when it comes into resonance with an oriented level). In addition to strong direct transitions (J' = J), we also observe weak collisional satellite lines ($J' = J \pm n$ with n = 1, 2, 3, ...) indicating that orientation is transferred to adjacent rotational levels during a collision. An LIF experiment (with linear polarized pump and probe beams) gives information on the collisional transfer of population. From these data, cross sections for both processes can be determined. We experimentally distinguish collisions of NaK with argon atoms from collisions with alkali atoms.

Theoretical potential energy curves for all ${}^{1}\Sigma^{+}$, ${}^{3}\Sigma^{+}$, ${}^{1}\Pi$, ${}^{3}\Pi$, ${}^{1}\Delta$, and ${}^{3}\Delta$ electronic states up to the Na(3s) + K(3d) asymptote

Polarization Spectroscopy

Circularly polarized pump beam induces an uneven m₁ population in both pump transition energy levels, making the gas birefringent for a linearly polarized probe beam sharing one or both of the pump transition levels

transitions

Polarization Spectroscopy and Collisions in NaK C. M. Wolfe¹, S. Ashman¹, J. Huennekens¹, B. Beser², J. Bai², A. M. Lyyra² ¹Lehigh University, ²Temple University

Work Supported by the National Science Foundation

$$\Delta \alpha_0 = \sum_{m_i} \left(f_{J_f, J_i}^{m_i + 1, m_i} - f_{J_f, J_i}^{m_i - 1, m_i} \right) n_{m_i}$$

$$\left\|\left\langle\beta_{f},J_{f},m_{f}\left|\vec{r}\right|\beta_{i},J_{i},m_{i}\right\rangle\right\|^{2}=f_{J_{f},J_{i}}^{m_{f},m_{i}}\left\|\left\langle\beta_{f},J_{f}\left|\left|r\right|\right|\beta_{i},J_{i}\right\rangle\right\|^{2}$$

$$f_{J_f,J_i}^{m_i+1,m_i} - f_{J_f,J_i}^{m_i-1,m_i} \propto m_i$$

$$\left(\frac{I_{coll}}{I_{direct}}\right)_{pol} = \frac{\Delta\alpha_{coll}}{\Delta\alpha_{direct}} \approx \frac{\sum_{m_{coll}} m_{coll} n_{m_{coll}}}{\sum_{m_{direct}} m_{direct} n_{m_{direct}}}$$

Thus $\sim 1/3$ of orientation is preserved

- Adjustment of model must not affect total population transfer (would alter calculated fluorescence signal) Model must not create an additional alignment in the collisional level R(n
- 2 models currently proposed

Density Matrix Model

- Necessary to develop a model for the transfer of orientation in a collision between the NaK molecule and an Argon or Potassium atom
- We need to solve the density matrix equations of motion for the system of energy

$$\dot{\rho}_{nm} = -\frac{i}{\hbar} \sum_{k} \left(H_{nk} \rho_{km} - \rho_{nk} H_{km} \right) + relaxation \ terms$$

- Diagonal elements represent population densities, off-diagonal element represent coherences between levels
- A computer program has been developed which solves the density matrix for a general case of 4 energy levels J_1 , J_2 , and J_3 and a collisional level J_c
- Computer model includes:
 - Laser coherence terms
 - Fluorescence into and out of various levels
 - Transit relaxation
 - Collisional excitation transfer
 - Adjustable *m*₁ dependent collisional rate
 - Additional "dump" levels representing other
 - ground and intermediate state levels

Model input includes collisional population transfer rates (k_{Ar} and k_{K}), along with various other critical experimental parameters (laser power, beam width, temperature, pressure, decay rates, etc.) and outputs m_J distribution of level 2 and collisional level. Input transfer rates are varied until agreement with experiment is reached

Current Computer Model Results

Calculation for m_{J} population distribution of directly populated level, given typical experimental parameters

- Anisotropic distribution of magnetic sublevels is clearly shown
- Probe beam is assumed to be weak compared to pump beam (consistent with polarization spectroscopy

Modeling of Collisional Orientation Transfer

It is necessary to develop an empirical model for the transfer of population between individual magnetic sublevels of directly populated level and collisionally $-|m_{direct}-m_{coll}|$

$$R(m_{direct}, m_{coll}) = \frac{e}{\sum_{m_{coll}} e^{\frac{-|m_{direct} - m_{coll}|}{\Delta m_0}}}$$
$$\sum_{m_{coll}} e^{\frac{-|m_{direct} - m_{coll}|}{\Delta m_0}}$$
$$m_{direct}, m_{coll}) = \begin{cases} f & \text{for } \Delta m = 0\\ (1 - f) & \text{for } \Delta m \neq 0 \end{cases}$$

Future Plans

- Future plans for research include
 - Find an appropriate model for the change in orientation during a collision
 - Take precise data under more controlled conditions as a function of temperature and pressure in order to get more precise values for k_{Ar} and k_{K}
 - Adjust collisional rate model in order to obtain observed experimental orientations of collisional levels
 - Look for vibrational transitions in collisions
 - Collaborating group at Temple U. has observed ground state collisional lines for large ΔJ in polarization spectroscopy on the Rb₂ molecule
 - Investigate these further