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Ant Colonies

Our project utilized Topological Data Analysis (TDA) to analyze topological fea-
tures in ant colonies in a combination of mathematics and biology. We wanted to
explore the mechanics behind ant group movement. By looking at the colony as
a network analyzed via TDA we were able to compare the movement to various
hypotheses. The experimental data for the ant colonies was provided by Prof.
James Waters and Prof. Xiaohui Guo [1].

Topology

VR Complexes
For our analysis using TDA, we elected to focus on the Vietoris-Rips Complex.
Under this construction, if data points are within a specified proximity parame-
ter of each other, they are considered a singular connected component. (This is
a simplified explanation, please inquire for further detail. Truly, VR Complexes
construct higher dimensional spaces, called simplices, out of these pairwise-
connected points, but for our purposes this can be mostly abstracted.)

Let S = some finite set of points in Rn, and let proximity parameter r ∈ R, r > 0

The Vietoris-Rips complex is defined as:

V R(S, r) = (S,Σr = {σ ⊆ S | distance(x, y) ≤ r,∀x, y ∈ σ})

V R(S, r) builds a higher dimensional space from the points in S, consisting of
edges, triangles, pyramids, and higher-dimensional analogs. The generalized
theoretical construction of the complexes is a wide topic, but over the course of
our project we primarily utilized Betti-0 numbers, which can be generally defined
as,

Betti-p = |Zp/Bp|
where Zp = {a ∈ cp | δ(a) = 0} and Bp = {b ∈ cp | ∃c ∈ cp+1, δ(b) = c}

Functionally, cp is a group of p−simplexes of dimension p, and δ is a de-
fined boundary operation. Hence, Bp is the image of cp+1 and Zp is the kernel of
cp, both under δ.

For our purposes, Betti-0 numbers can be thought of as the number of connected
components of the network. Examining this statistic over the proximity parameter
allows us to examine the persistent homology of the network in each frame,
giving us more insight into the ants’ movement. [3]

Example
The following illustrates the construction and baseline analysis of a Vietoris-Rips
Complex, for a simple choice of S as the six vertices of a hexagon.
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Frobenius Norms
Our analysis also utilized Frobenius norms, which are matrix norms that we used
to compare the topological features of the different data sets.
The Frobenius norm of a matrix A can be defined as,

||A||F =

√√√√ m∑
i=1

n∑
j=1

(aij)2

such that aij iterates through every element of the matrix.

Process

We began our project by analyzing the experimental data. The experimental data is from
an ant colony of 61 ants, and has been divided into two data sets. Each is a 162 second
recording (with 30 frames per second), with the first consisting of unalarmed ants as a
baseline and the second being the same ants in an alarmed state. The alarm division
is from a biological perspective based on the ants’ speeds [1]. The persistent homology
at each frame is described by barcodes. Below is the barcode of the first frame of the
unalarmed data. Each bar represents one connected component in the ant network. As
the proximity parameter increases, more ants are connected; thus the number of connected
components decreases.

Fig. 1: An example of a barcode plot from the data

How persistent homology varies over time can be visualized using a Crocker plot [2]. Each
x-coordinate represents a frame. The y-values respresent the barcode of that corresponding
frame. Barcode values associated with different Betti numbers are represented by different
colors, eg. purple corresponds to Betti-0=61 and red corresponds to Betti-0=1. The derived
data from both the alarmed and unalarmed data set can be seen below.

Fig. 2: Experimental Crocker Plots

Frobenius Norms
Frobenius norm for the unalarmed dataset:
Increment 0.1: 30646.6024, increment 0.01: 96490.6943.
Frobenius norm for the alarmed dataset:
Increment 0.1: 34252.0631, increment 0.01: 107934.8501.

Code
Our group was able to construct the necessary VR Complexes and analyze this data
through coding primarily via Python and R. These scripts were developed by our group, off
of foundations in R’s TDA and C++’s Ripser packages. Code is available upon request.

Hypotheses Simulations
After creating this analysis for the experimental data, our group developed several hypothe-
ses for ant movement, and coded simulations to exhibit the movement of each. We began
with three simulations: random, center-of-mass, and point-to-point. Each simulation was
based fully on the experimental data, aiming to change only the movement of the ants. As
such, the speeds of the ants, the size of the arena, and the timeframes measured were all
kept similar to the experimental data for each simulation [1]. The point-to-point simulation
was excluded from the Crocker plots because it did not produce noteworthy data.

Comparison to Simulations

From our hypotheses simulations, we then performed the same TDA analysis
that was done on the experimental data. Based on this, we compared the topo-
logical features between the experimental data and the simulations. Observe
the simulation results below.

Fig. 3: CROCKER Plots of simulations with different restrictions

Frobenius Norms
Frobenius norm for the simulation with random movement:
Unalarmed: Increment 0.1: 39337.9789, increment 0.01: 124069.4846
Alarmed: Increment 0.1: 39224.9056, increment 0.01: 123711.1316
Frobenius norm for the simulation with movement towards center of mass:
Unalarmed: Increment 0.1: 36186.8349, increment 0.01: 114095.3721
Alarmed: Increment 0.1: 33254.4579, increment 0.01: 104831.0618.

Discussion
As expected, clearly the TDA analysis differentiates between the experimental
data and our simulations. The simulations’ Frobenius norms are roughly 25%
larger in each case. Comparison of the Crocker plots of experimental unalarmed
and alarmed state indicates that the ants stay in a few midsize clusters in the
unalarmed state and tend towards one larger cluster in alarmed state. The sim-
ulated data seems more similar to the alarmed state than the unalarmed state
when comparing the topological features illustrated by the Crocker plots.
Nonetheless, continuing this process and further refining our simulations will
grant us a deeper insight into the ants’ movement, and eventually a more com-
plex simulation may generate movement that produces far closer results.
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