Providence College

DigitalCommons@Providence

Chemistry & Biochemistry Student Scholarship

Chemistry & Biochemistry

4-28-2022

Exploring Indicator Displacement Assays for Phosphate Detection in Seawater

Francis Radics Providence College

Follow this and additional works at: https://digitalcommons.providence.edu/chemistry_students

Part of the Biochemistry Commons, Cellular and Molecular Physiology Commons, Molecular Biology Commons, and the Oceanography Commons

Radics, Francis, "Exploring Indicator Displacement Assays for Phosphate Detection in Seawater" (2022). *Chemistry & Biochemistry Student Scholarship*. 25. https://digitalcommons.providence.edu/chemistry_students/25

This Poster is brought to you for free and open access by the Chemistry & Biochemistry at DigitalCommons@Providence. It has been accepted for inclusion in Chemistry & Biochemistry Student Scholarship by an authorized administrator of DigitalCommons@Providence. For more information, please contact dps@providence.edu.

Introduction

According to the US EPA, phosphate in aquatic environments is the "limiting nutrient" for algae growth. Enhanced concentrations of phosphate can fuel harmful algal blooms, which have a variety of detrimental impacts on aquatic ecosystems.

We are working within the RI C-AIM Thrust III project portfolio to develop low-cost and easily deployable fluorescence-based sensors for phosphate and nitrate. The goal for the Thrust III project is limit-of-detection (LOD) of 1 ppb in saltwater for each anion.

Complex 3 have shown good selectivity for phosphate and pyrophosphate.

experiments in this poster are with Zn²⁺.

References

- 5. A.M. Piatek, Y. J. Bomble, S. L. Wiskur, and E. V. Anslyn. J. Am. Chem. Soc. 2004, 126, 6072 6077.

Exploring Indicator Displacement Assays for Phosphate Detection in Seawater Francis Radics, Paul Eyo, and John Breen Department of Chemistry and Biochemistry Providence College

4) Our LODs are \sim 100 ppb in pH 7.2 0.01 M HEPES and \sim 500 ppb with 0.1 M NaCl.

Fluorescence Assays: Salicyl Fluorone with HBPMP/Zn²⁺

The second dye we investigated was salicyl fluorone (SF).

Solutions of the dye alone are orange; however, additions of HBPMP/Zn²⁺ leads to the solution changing color to a pinkish color. This observation can also be seen in the absorption spectra on the right, where the λ_{max} shifts towards longer wavelengths upon the addition of HBMP/ Zn^{2+} .

Following addition of phosphate, the pinkish color changes to a light purple.

Figure SF3: (a) The fluorescence recovery of a 10 μ M solution of SF: 10 μ M HPBPMP/Zn²⁺ with increasing amounts of phosphate with and without 0.1 M NaCl (HEPES 0.010 M, pH 7.2, λ_{ex} = 508 nm, λ_{em} = 540 nm) and (b) an image of the fluorescence emanating from solutions of SF, SF•HBPMP/Zn²⁺ and SF•HBPMP/Zn²⁺ with > 1 equivalent phosphate excited with a 405 nm laser pointer.

Takeaways

- 2) The maximum recovery is $\sim 1/3$ of the dye alone signal.
- 3) The extent of quenching and dynamic range is reduced in the presence of 0.1 M NaCl.
- experiments with C and reported colorimetric IDAs.
- 5) SF is not photostable, greatly hampering the LOD.

Figure SF1: (a) A schematic of the SF•HBPMP/Zn²⁺ complex, (b) the absorbance spectra of a 10 μ M solution of SF with additions of HBPMP/Zn²⁺ in pH 7.2 0.010 M HEPES, and (c) solutions of SF, SF•HBPMP/Zn²⁺ and SF•HBPMP/Zn²⁺ with > 1 equivalent phosphate.

> Figure SF2: (a) The emission spectra of a 25 μ M solution of SF in pH 7.2 0.010 M HEPES with additions of HBPMP/Zn²⁺ $(\lambda_{ex} = 508 \text{ nm}) \text{ and } (\mathbf{b}) (\lambda_{em})_{max}$ with increasing HBPMP/Zn²⁺ indicating a 1:1 complex.

1) SF•HBPMP/Zn²⁺ can be used in a fluorescent IDA with excitation and emission in the visible.

4) The maximum recovery is reached with \sim 4 equivalents of phosphate. This is similar to our

This material is based upon work supported by the National Science Foundation under

RHODE ISLAND CONSORTIUM FOR Coastal Ecology Assessment Innovation & Modeling