Providence College DigitalCommons@Providence

Biology Student Scholarship

Biology

4-27-2023

Circadian Rhythm Effects of Social Jetlag and Exercise on Stress Levels and Weight Change of Fischer Rats

Brian Schwalm Providence College

Follow this and additional works at: https://digitalcommons.providence.edu/bio_students

Part of the Biology Commons

Schwalm, Brian, "Circadian Rhythm Effects of Social Jetlag and Exercise on Stress Levels and Weight Change of Fischer Rats" (2023). *Biology Student Scholarship*. 62. https://digitalcommons.providence.edu/bio_students/62

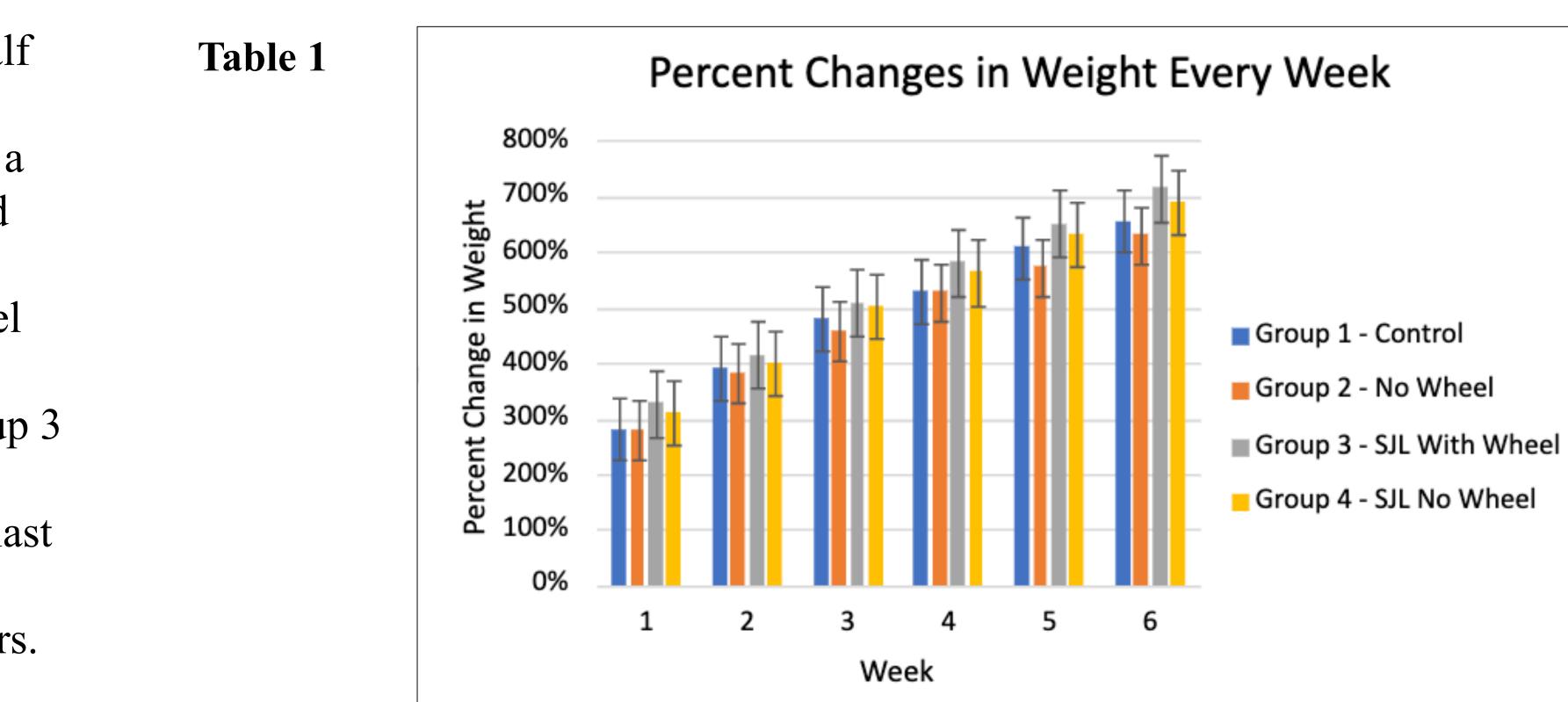
This Poster is brought to you for free and open access by the Biology at DigitalCommons@Providence. It has been accepted for inclusion in Biology Student Scholarship by an authorized administrator of DigitalCommons@Providence. For more information, please contact dps@providence.edu.

Purpose

Circadian rhythms are the internally driven 24-hour cycl of biological processes regulating sleep schedules, physiological activity, digestion, and hormone levels in living organisms.¹ Changes in environmental cues, such light, alter circadian rhythms. The superchiasmatic nucle (SCN), a region of the mammalian brain, receives retina information and sets the internal clock.² Altering the light/dark cycle makes the SCN reschedule behavioral activity patterns, yet this requires a few days. Social jetle such as changing sleep schedules on the weekend, does allow the biological clock sufficient time to adapt.³ Abruptly disturbing sleep cycles leads to deviations from normal weight changes and increases the secretion of cortisol, a stress hormone.⁴ However, exercise helps regulate circadian rhythms by inducing the secretion of melatonin and promoting natural activity patterns.⁵ Therefore, in our model of Fischer rats, we hypothesized exercise may mitigate the negative health implications of social jetlag.

Materials and Methods

- 16 Fisher rats around 4 months of age were used in the experiment.
- The animals were housed individually and acclimated for a week.
- The rats followed a 7 day cycle starting on Wednesday
- After a week, the rats were divided into 2 equal groups based on weight and activity.
- For 2 weeks, the rats maintained either a normal L/D cycle or a shifting LD cycle.
- Wheel running data was collected to follow the internal circadian clock.
- At the start of week 3, wheels were removed from half of the rats in each group.
- This created 4 different subject groups: Group 1 was a control with non-fluctuating LD cycles and unlimited wheel access.
- Group 2 had non-fluctuating LD cycles with no wheel access for the last 6 weeks.
- Groups 3 and 4 had fluctuating LD cycles, with Group 3 having unlimited wheel access throughout the experiment, and Group 4 not having a wheel for the last 6 weeks.
- All animals had access to food and water for 24 hours.


Circadian Rhythm Effects of Social Jetlag and Exercise on Stress Levels and Weight Change of Fischer Rats

Brian Schwalm, Shannon Maguire and Pamela Snodgrass-Belt, Ph.D. Providence College, Providence, RI 02908

Alternating of Day and Night Cycles

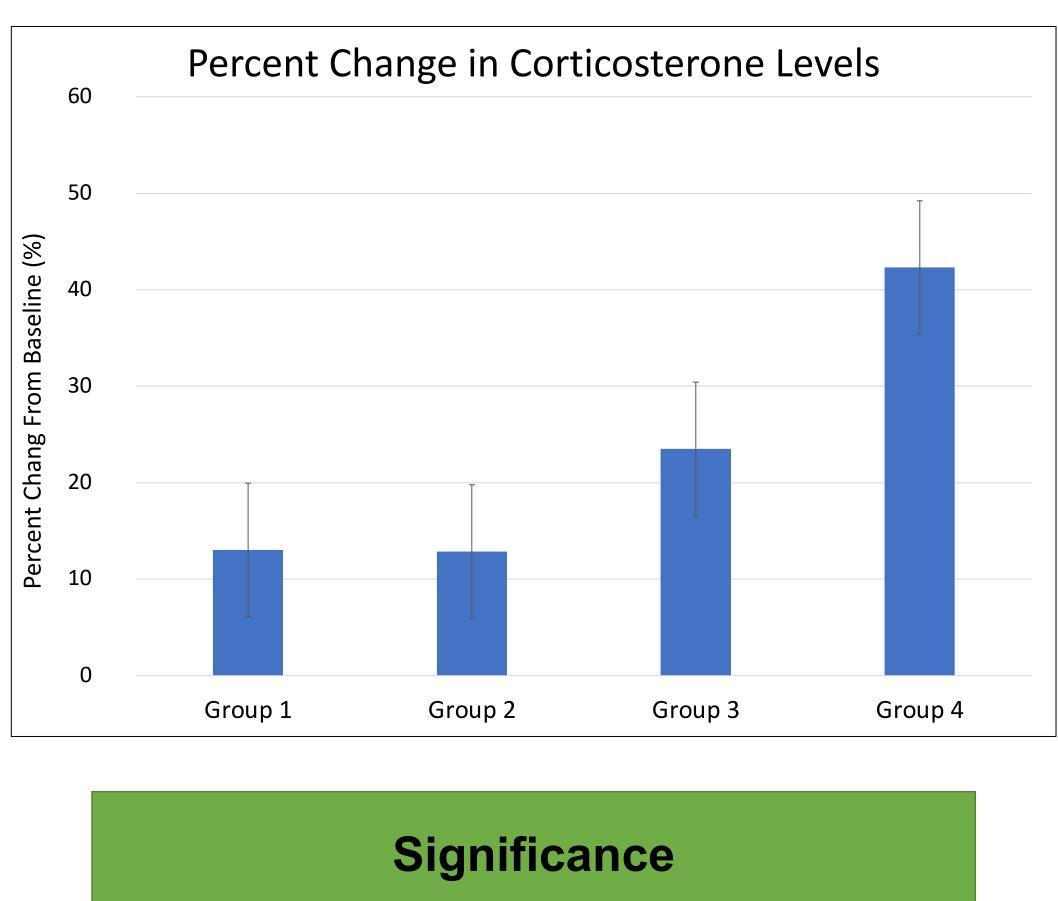
cles h as leus hal	Animals were acclimated to a standard LD cycle Rats subjected to social jetlag had a shifted LD of LD cycle of lights off from 7:00 am to 7:00 pm to LD cycle of lights off from 12:00 pm to 12:00 an Animals had lights off from 7:00 am to 12:00 an Animals returned to the regular LD cycle by hav All four groups of rats began the same LD cycle	
tlag, s not	Monitoring Wheel Ru Collect	
)m	• Animal activity was measured from a running w	
	• Wheel available during entrainment perio	C
f	• Onset of wheel running a reliable measure of i	
	• Corticosterone levels recorded based on	
ed	• Rats placed in metabolic chamber with gel hydra	
of	• Weight change of animals was measured	•
	Figure 1	0 4 8 1 - 5 - 10 - 15 -
ne	Animal 7: Group 1 – Control	20 - 25 - 30 - 35 - 40 - 45 - 50 -
d		
ay.	Animal 3: Group 2 –	10 - 15 - 20 - 25 -
ps	No wheel	35 - 40 - 45 - 50 - 55 -

Weight Changes

le.

- cycle schedule.
- for 5 days.
- am for 3 days.
- im on Sundays to begin social jetlag.
- aving lights turn on at 7:00 pm on Tuesday. les on Tuesday nights.

, Weight Measuring & ⁱ Urine


wheel connected to a data monitor during social jet lag period iternal clock ir cycle with 3-hour acclimation ration packets for urine sample collection Thursday at 12:00 pm.

Animal 14: Group 3 – SJL with wheel

Animal 15: Group 3 – SJL with no wheel

Figure 2

- hypothesis.

- 1. Edery, I. (2000). Circadian rhythms in a nutshell. *Physiological genomics*, 3(2), 59-74. 2. Patton, A. P., & Hastings, M. H. (2018). The suprachiasmatic nucleus. Current Biology, 28(15), R816-R822.
- 3. Depner, C. M., Stothard, E. R., & Wright, K. P. (2014). Metabolic consequences of sleep and circadian disorders. Current diabetes reports, 14(7), 1-9.
- 4. Walker, W. H., Walton, J. C., DeVries, A. C., & Nelson, R. J. (2020). Circadian rhythm disruption and mental health. Translational psychiatry, 10(1), 1-13.
- 5. Serin, Y., & Tek, N. A. (2019). Effect of circadian rhythm on metabolic processes and the regulation of energy balance. Annals of Nutrition and Metabolism, 74(4), 322-330

Corticosterone Data

The evaluation of the relative change in corticosterone levels was done using Corticosterone Enzyme Immunoassay Kit from Arbor Assays.⁶ Baseline and final collections of urine were diluted and ran in the assay (Figure 2).

• Groups 1 and 3 included data from an identical study that did not include the removing of the wheel. The percent changes were averaged together in Figure 2. As predicted, Group 4 had the largest increase in stress levels compared to Group 1, however, despite the trend, the P value was 0.153 and is not statistically significant. Although Group 3 did show a trend of increased corticosterone levels, because of variability within the

group, there was no statistical significance with Group 1 since the P value was 0.363.

Exercise seems to decrease the impact of social jetlag on corticosterone as the animals with a wheel did not have as elevated levels as those without a wheel, but the sample size has too much variance to support the

References

6. Arbor Assays. (2009). Corticosterone enzyme immunoassay kit. Ann Arbor, Michigan.